Orta Gerilim Yeraltı Kablolarında Sabit ve Zamanla Değişen Akımların Neden Olduğu Manyetik Alanların Sayısal Analizi ve Karşılaştırılması

Güç sistemi içerisindeki alternatif akım taşıyan iletkenlerin etrafında oluşan manyetik alanlar, insan sağlığını olumsuz etkilemektedir. Özellikle, enerjinin elektriksel güvenlik amacıyla yeraltı kabloları ile taşındığı orta gerilim sistemlerinde, akım mertebelerinin yüksek olması ve kabloların insanların yaşadığı bölgelerde tesis edilmesi nedeniyle bu alanda yapılan çalışmalara önem kazandırmıştır. Literatürde, yer altı kablolarının neden olduğu manyetik alanların sayısal yöntemler kullanılarak hesaplanması ve bunların sınır değerlerle karşılaştırılması üzerine pek çok çalışma gerçekleştirilmiştir. Bu çalışmaların bazılarında faz akımları için sınır koşulları sabit olarak tanımlanmıştır. Ancak, manyetik alanın kaynağı olan alternatif akım zamana bağlı olarak değişen vektörel bir büyüklüktür. Bu nedenle, manyetik akı yoğunluğu hesaplanırken akım yönünün, akımın zamana bağlı değişiminin ve faz farkının dikkate alınması analizlerin doğruluğu bakımından önem arz etmektedir. Bu çalışmada, örnek bir orta gerilim yeraltı kablo sisteminin, toprak yüzeyinden bir metre yukarıdaki referans düzlemde meydana getirdiği manyetik alan yoğunluğu değerleri Comsol Multiphysics kullanılarak belirlenmiştir. Analizler, hem akımın sabit alındığı stasyoner domende hem de zamana bağlı olarak değiştiği zaman domeninde gerçekleştirilmiş olup sonuçlar karşılaştırılarak değerlendirilmiştir. Sonuçlara göre, faz akım değerleri sabitken, maksimum manyetik alan yoğunluğunun 0.2 mT sınır değeri aştığı tespit edilmiştir. Ancak zamana bağlı yapılan analizlerde elde edilen manyetik alan yoğunluğu güvenli sınır içerisinde kaldığı görülmektedir. Ayrıca, stationary domainde elde edilen sonuçlarının zaman domeninde elde edilen sonuçlara göre oldukça yüksek olduğu tespit edilmiştir. Sonuç olarak, alternatif akım taşıyan yeraltı kabloları veya havai hatlar için gerçekleştirilecek manyetik alan analizlerinde, manyetik akı yoğunluğunu doğru belirleyebilmek için akımın zaman bağlı değişiminin mutlak surette dikkate alınması gerektiği ortaya konmuştur.

Numerical Analysis and Comparison of Magnetic Fields Caused by Constant and Time Varying Currents in Medium Voltage Underground Cables

The magnetic fields formed around the conductors carrying current alternating current in the power system adversely affect human health. Especially in medium voltage systems, where energy is mostly carried by underground cables for electrical safety, due to the high current levels and the installation of cables in areas where people live, studies in this field have gained importance. In literature, many studies have been carried out on the calculation of magnetic fields caused by underground cables using numerical methods and their comparison with limit values. In some of these studies, the boundary conditions for phase currents are defined as constant. However, alternating current, which is the source of the magnetic field, is a time-varying vector quantity. For this reason, it is important for the accuracy of the analysis to take into account the direction of the current, the time-dependent change of the current and the phase difference while calculating the magnetic flux density. In this study, the magnetic flux density values caused by a sample medium voltage underground cable system at the reference plane one meter above the ground surface are determined using Comsol Multiphysics. Analyzes are performed both in the stationary domain where the current is constant and in the time domain when it changes depending on time, and the results are discussed and compared. According to the results, it is determined that the maximum magnetic flux density exceeded the limit value of 0.2 mT, while the phase current values are constant. However, it is seen that the magnetic flux density obtained in time-dependent analyzes remains within the safe limit. In addition, it has been determined that the results obtained in the stationary domain are considerably higher than the results obtained in the time domain. As a result, it has been revealed that the time-dependent variation of the current must be taken into account in order to accurately determine the magnetic flux density in the magnetic field analyzes to be performed for underground cables or overhead lines carrying alternating current.

___

  • Al-Khalidi, H., & Kalam, A. (2006). The impact of underground cables on power transmission and distribution networks. First International Power and Energy Conference, (PECon 2006) Proceedings, 576–580. https://doi.org/10.1109/PECON.2006.346717
  • Arabul, A. Y., Senol, I., Keskin Arabul, F., Aydeniz, M. G., Oner, Y., & Kalkan, G. (2015). An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers. World Academy of Science, Engineering and Technology International Journal of Energy and Power Engineering, 9(8), 1036–1040.
  • Arabul, A. Y., Senol, İ., Kumru, C. F., Boynuegri, A. R., & Keskin, F. (2014). An Experimental Study For Comparing The Effect Of The Magnetic Field On Human Health Around Transformers In Sinusoidal And Non-Sinusoidal Current Conditions. The 5th International Symposium on Sustainable Development, 129–136. https://scholar.google.com.tr/citations?view_op=view_citation&hl=tr&user=0meqR88AAAAJ&cstart=20&pagesize=80&citation_for_view=0meqR88AAAAJ:u-x6o8ySG0sC
  • Ateş, Y., Gökçek, T., & Arabul, A. Y. (2021). Impact of hybrid power generation on voltage, losses, and electricity cost in distribution networks. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, 29(3), 1720–1735. https://doi.org/10.3906/elk-2006-149
  • Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. da P., Basto, J. P., & Alcalá, S. G. S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024. https://doi.org/10.1016/J.CIE.2019.106024
  • Erduman, A., Durusu, A., & Kekezoğlu, B. (2018). Küçük Güçlü Rüzgâr Santrallerinin Kurulumu ve Şebekeye Etkilerinin Teknik ve Ekonomik Açıdan Değerlendirilmesi: Uygulama Çalışması. Avrupa Bilim ve Teknoloji Dergisi, 13, 112–117. https://doi.org/10.31590/EJOSAT.420155
  • Gökçek, T., & Ateş, Y. (2019). Dağıtık Güç Üretiminin Şebekeye Entegrasyonu ve Olası Etkilerinin İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 15, 216–228. https://doi.org/10.31590/EJOSAT.521350
  • ICNIRP. (2010). International Commission on Non-Ionizing Radiation Protection. Guidelines for Limiting Exposure to Time‐Varying Electric and Magnetic Fields (1 HZ – 100 kHZ). In Health Physics (Vol. 99, Issue 6). https://doi.org/10.1097/HP.0b013e3181f06c86 Kablo, V. (n.d.). Orta Gerilim Kabloları. Retrieved February 19, 2022, from https://www.vatan.com.tr/urunler/orta-gerilim-kablolari#print-wrap
  • Kocatepe, C., Arikan, O., Kumru, C. F., Erduman, A., & Umurkan, N. (2012). Electric field measurement and analysis around a line model at different voltage levels. ICHVE 2012 - 2012 International Conference on High Voltage Engineering and Application, 39–42. https://doi.org/10.1109/ICHVE.2012.6357005
  • Kryltcov, S., Makhovikov, A., & Korobitcyna, M. (2021). Novel Approach to Collect and Process Power Quality Data in Medium-Voltage Distribution Grids. Symmetry 2021, Vol. 13, Page 460, 13(3), 460. https://doi.org/10.3390/SYM13030460
  • Kumru, C. F., Kocatepe, C., & Arıkan, O. (2015). An investigation on electric field distribution around 380 kv transmission line for various pylon models. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 9(8), 138–141.
  • MacHado, V. M. (2010). FEM/BEM hybrid method for magnetic field evaluation due to underground power cables. IEEE Transactions on Magnetics, 46(8), 2876–2879. https://doi.org/10.1109/TMAG.2010.2044390
  • MacHado, V. M. (2012). Magnetic field mitigation shielding of underground power cables. IEEE Transactions on Magnetics, 48(2), 707–710. https://doi.org/10.1109/TMAG.2011.2174775
  • Mohamed, A. Z. E. D., Zaini, H. G., Gouda, O. E., & Ghoneim, S. S. M. (2021). Mitigation of Magnetic Flux Density of Underground Power Cable and its Conductor Temperature Based on FEM. IEEE Access, 9, 146592–146602. https://doi.org/10.1109/ACCESS.2021.3121175
  • Reyes, Z., & Andrés, C. (2007). Voltage quality improvement in distribution networks: A case study. 2007 9th International Conference on Electrical Power Quality and Utilisation, EPQU, 1–6. https://doi.org/10.1109/EPQU.2007.4424156
  • Rozov, V., Grinchenko, V., Tkachenko, O., & Yerisov, A. (2018). Analytical Calculation of Magnetic Field Shielding Factor for Cable Line with Two-Point Bonded Shields. International Conference on Mathematical Methods in Electromagnetic Theory, MMET, 2018-July, 358–361. https://doi.org/10.1109/MMET.2018.8460425
  • Shen, Y., Abubakar, M., Liu, H., & Hussain, F. (2019). Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems. Energies 2019, Vol. 12, Page 1280, 12(7), 1280. https://doi.org/10.3390/EN12071280
  • Ulku, I., & Alabas-Uslu, C. (2020). Optimization of cable layout designs for large offshore wind farms. International Journal of Energy Research, 44(8), 6297–6312. https://doi.org/10.1002/ER.5336
  • Widodo, W., Azimmah, A., & Santoso, D. (2018). Exploring the Japan Cave in Taman Hutan Raya Djuanda, Bandung Using Gpr. Journal of Environmental and Engineering Geophysics, 23(3), 377–381. https://doi.org/10.2113/JEEG23.3.377
  • Yang, X., Zhou, D., Song, W., She, Y., & Chen, X. (2021). A Cable Layout Optimization Method for Electronic Systems Based on Ensemble Learning and Improved Differential Evolution Algorithm. IEEE Transactions on Electromagnetic Compatibility, 63(6), 1962–1971. https://doi.org/10.1109/TEMC.2021.3075896
  • Zeineldin, H. H., Sharaf, H. M., Ibrahim, D. K., & El-Zahab, E. E. D. A. (2015). Optimal protection coordination for meshed distribution systems with DG using dual setting directional over-current relays. IEEE Transactions on Smart Grid, 6(1), 115–123. https://doi.org/10.1109/TSG.2014.2357813
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç
Sayıdaki Diğer Makaleler

COVID-19 Pandemisi Öncesinde ve Pandemi Döneminde Türkiye’deki Havalimanı Etkinliklerinin Üç Aşamalı Veri Zarflama Analizi İle Belirlenmesi

Koray KÖÇKEN, Mehpare TİMOR, Mustafa U. KARAKAPLAN

Covid-19 Pandemi Sürecinde Türkiye’de Hastanelerde Alınan Önlemlerin ve Uygulamaların İncelenmesi ve Değerlendirilmesi

Dilan KARAKUŞ, Edip AVŞAR

Agresif Kür Ortamının Beton-Donatı Aderansına Etkisinin İncelenmesi

Ramazan YAVUZ, Osman GÜNAYDIN, Kadir GÜÇLÜER

Akışkan Dental Kompozitin Gamma Radyasyonu Soğurma Özellikleri

Aycan ŞENGÜL, Kadir AKGÜNGÖR, İskender AKKURT

Ribes Orientale Bitkisi Meyvelerinin Fenolik Kompozisyonu, Toplam Fenolik Madde Miktarı, Antioksidan Kapasiteleri ve Bazı Fizikokimyasal Özellikleri

Bayram YURT, Lütfi BEHÇET, Nurullah DEMİR, Muhammed Said YOLCİ

Modifiye Gauss Eleme Yöntemi Kullanarak 2-Boyutlu Schrödinger Denklemine Sayısal Yaklaşım

Tarkan AYDIN, Ali SIRMA

Sigorta Sektöründe Makine Öğrenmesi ile Çapraz Satış Modeli Oluşturma Üzerine Bir Örnek Çalışma

Yunus Emre ÖZDEMİR, Selim BAYRAKLI

Ambalaj Sektörünün Sürdürülebilirliği ve Petrol Bazlı Plastik: Plastik Ambalaj Sektörünün Petrole Olan Bağımlılığının Analizi

Bekir KESKİN, Şahnaz KOÇOĞLU

Uluslararası Stratejik Pazarlama Kararları ve Lojistik 4.0 Bağlamında Lojistik Maliyetler ile Karlılık İlişkisi

Yunus CERAN, Metehan ORTAKARPUZ, Hüseyin Enes ERKOÇAK

Hibrit Gri Kurt Optimizasyonu ile Kapılı Tekrarlayan Birim Modeli Kullanılarak Günlük Akım Tahmini

Hüseyin Çağan KILINÇ, Yunus ÖZTÜRK