Patolojik Doku Örneklerinde Mikroşerit Anten Yapısında Kazanç Artırımının İncelenmesi

Patolojik raporlar hastalıkların teşhis ve özellikle tedavisinde önemli rol oynamaktadır. Bu sebeple patolojik doku örneklerine ait raporlara kısa sürede erişim sağlayabilmek önem arz etmektedir. Günümüzde patolog ve numune sayısına bağlı olarak değişen rapor ulaşım süresi ayları bulabilmektedir. Bu sebeple, biyomedikal alanda sıklıkla kullanılan mikroşerit anten yapıları patolojik doku örneklerine ait değerlendirmeleri yapmada araştırılmaktadır. Bu çalışmada anten yapılarına ait kazanç değerlerinin simülasyon sonuçlarına bağlı olarak değişimi incelenmiştir. Mikroşerit anten yapısında 4.4 delektrik sabiti değerine sahip olan FR-4 malzemesi kullanılmıştır. 2.45 GHz çalışma frekansı olan anten yapısına eklenen dört adet dairenin çapları parametrik olarak değiştirilmiştir. Anten yapısının en yüksek kazanç değeri araştırılmıştır. Kazanç değeri 1.89 dB’den yaklaşık 3.5 dB değerine yükseltilmiştir.

Investigation of Gain Enhancement in Microstrip Antenna Structure in Pathological Tissue Samples

Pathological reports play an important role in the diagnosis and especially in the treatment of diseases. For this reason, it is important to be able to access the reports of pathological tissue samples in a short time. Today, depending on the pathologist and the number of samples, the report delivery time can take months. For this reason, microstrip antenna structures, which are frequently used in the biomedical field, are investigated to evaluate pathological tissue samples. In this study, the variation of the gain values of antenna structures depending on the simulation results is examined. FR-4 substrate material, which has a dielectric constant of 4.4, is used in the microstrip antenna structure. The diameters of four circles added to the antenna patch structure with an operating frequency of 2.45 GHz are changed parametrically. The highest gain value of the antenna structure is investigated. The gain value has been increased from 1.89 dB to about 3.5 dB.

___

  • B. J. Kwaha, O. N. Inyang, P. A. (2011). The circular microstrip patch antenna-design and implementation. International Journal of Recent Research and Applied Studies (IJRRAS), 8(1), 86–95.
  • Baek, J. J., Kim, S. W., Park, K. H., Jeong, M. J., & Kim, Y. T. (2018). Design and performance evaluation of 13.56-MHz passive RFID for E-skin sensor application. IEEE Microwave and Wireless Components Letters, 28(12), 1074–1076. https://doi.org/10.1109/LMWC.2018.2876764
  • Balanis, C. A. (2013). Anten teorisi : analiz ve tasarım. Nobel Akademik Yayıncılık.
  • Cao, Y., Cai, Y., Cao, W., Xi, B., Qian, Z., Wu, T., & Zhu, L. (2019). Broadband and High-Gain Microstrip Patch Antenna Loaded With Parasitic Mushroom-Type Structure. IEEE Antennas and Wireless Propagation Letters, 18(7), 1405–1409. https://doi.org/10.1109/LAWP.2019.2917909
  • Caspers, F. (2011). RF engineering basic concepts: S-parameters. CAS 2010 - CERN Accelerator School: RF for Accelerators, Proceedings, (June), 67–93.
  • Catherwood, P. A., & Mclaughlin, J. (2018). Internet of Things- Enabled Hospital Wards. (June), 10–18.
  • Chen, Y., Wang, S., Shi, S., Ding, J., Jiang, M., Wang, T., & Zhai, G. (2020). Gain Enhancement for Landstorfer Yagi Antenna Using Zero- Index Metamaterials. 2020 IEEE MTT-S International Wireless Symposium, IWS 2020 - Proceedings. https://doi.org/10.1109/IWS49314.2020.9359970
  • Darwish, A., & Hassanien, A. E. (2011). Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 11(6), 5561–5595. https://doi.org/10.3390/s110605561
  • Das, R., & Yoo, H. (2018). Application of a Compact Electromagnetic Bandgap Array in a Phone Case for Suppression of Mobile Phone Radiation Exposure. IEEE Transactions on Microwave Theory and Techniques, 66(5), 2363–2372. https://doi.org/10.1109/TMTT.2017.2786287
  • Das, S., & Mitra, D. (2018). A compact wideband flexible implantable slot antenna design with enhanced gain. IEEE Transactions on Antennas and Propagation, 66(8), 4309–4314. https://doi.org/10.1109/TAP.2018.2836463
  • Feng, L. Y., Sun, Y., & Leung, K. W. (2016). Gain enhanced omnidirectional cylindrical ring dielectric resonator antenna. 2016 IEEE Antennas and Propagation Society International Symposium, APSURSI 2016 - Proceedings, 139–140. https://doi.org/10.1109/APS.2016.7695778
  • Gabriel, C. (1996). Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Environmental Health, Report No.(June), 21. https://doi.org/Report N.AL/OE-TR- 1996-0037
  • Garcia-pardo, C., Andreu, C., Fornes-leal, A., Castelló-palacios, S., Perez-simbor, S., & Barbi, M. (2018). Ultrawideband Technology for Medical In-Body Sensor Networks. (june), 19–33. https://doi.org/10.1109/MAP.2018.2818458
  • Guha, D., Chattopadhya, S., & Siddiqu, J. Y. (2010). Estimation of gain enhancement replacing PTFE by air substrate in a microstrip patch antenna. IEEE Antennas and Propagation Magazine, 52(3), 92–95. https://doi.org/10.1109/MAP.2010.5586581
  • Hasan, R. R., Shanto, M. A. H., Howlader, S., & Jahan, S. (2018). A novel design and miniaturization of a scalp implantable circular patch antenna at ISM band for biomedical application. 2017 Intelligent Systems Conference, IntelliSys 2017, 2018-Janua(September), 166–169. https://doi.org/10.1109/IntelliSys.2017.8324286
  • Kamel, H. M. (2011). Trends and Challenges in Pathology Practice Choices and necessities. 11(1), 38–44.
  • Khan, Z., Razzaq, A., Iqbal, J., Qamar, A., & Zubair, M. (2018). Double circular ring compact antenna for ultra-wideband applications. IET Microwaves, Antennas and Propagation, 12(13), 2094–2097. https://doi.org/10.1049/iet-map.2018.5245
  • Lesnik, R., Verhovski, N., Mizrachi, I., Milgrom, B., & Haridim, M. (2018). Gain enhancement of a compact implantable dipole for biomedical applications. IEEE Antennas and Wireless Propagation Letters, 17(10), 1778–1782. https://doi.org/10.1109/LAWP.2018.2866233
  • Li, R., Guo, Y. X., Zhang, B., & Du, G. (2017). A Miniaturized Circularly Polarized Implantable Annular-Ring Antenna. IEEE Antennas and Wireless Propagation Letters, 16, 2566–2569. https://doi.org/10.1109/LAWP.2017.2734246
  • Liu, C., Guo, Y. X., & Xiao, S. (2012). Compact dual-band antenna for implantable devices. IEEE Antennas and Wireless Propagation Letters, 11, 1508–1511. https://doi.org/10.1109/LAWP.2012.2233705
  • Marnat, L., Ouda, M. H., Arsalan, M., Salama, K., & Shamim, A. (2012). On-chip implantable antennas for wireless power and data transfer in a glaucoma-monitoring SoC. IEEE Antennas and Wireless Propagation Letters, 11, 1671–1674. https://doi.org/10.1109/LAWP.2013.2240253
  • Mustacchio, C., Boccia, L., Arnieri, E., & Amendola, G. (2021). Gain Enhancement Technique for On-Chip Monopole Antenna. 2020 50th European Microwave Conference, EuMC 2020, 650–653. https://doi.org/10.23919/EUMC48046.2021.9338160
  • Nakhleh, R. E. (2006, July 1). What is quality in surgical pathology? Journal of Clinical Pathology, Vol. 59, pp. 669–672. https://doi.org/10.1136/jcp.2005.031385
  • Nesasudha, M., & Fairy, J. J. (2018). Low profile antenna design for biomedical applications. Proceedings of IEEE International Conference on Signal Processing and Communication, ICSPC 2017, 2018-Janua(July), 139–142. https://doi.org/10.1109/CSPC.2017.8305825
  • Nikolayev, D., Joseph, W., Skrivervik, A., Zhadobov, M., Martens, L., & Sauleau, R. (2019). Dielectric-Loaded Conformal Microstrip Antennas for Versatile In-Body Applications. IEEE Antennas and Wireless Propagation Letters, 18(12), 2686–2690. https://doi.org/10.1109/LAWP.2019.2948814
  • Ozturk, T., & Güneşer, M. T. (2019). Measurement Methods and Extraction Techniques to Obtain the Dielectric Properties of Materials. In Electrical and Electronic Properties of Materials (pp. 1–27). https://doi.org/10.5772/intechopen.80276
  • Ren, A., Qing, M., Zhao, N. A. N., Wang, M., & Gao, G. E. (2018). Nano-Ferrite Near-Field Microwave Imaging for In-Body Applications. 6, 29551–29557.
  • Sabban, A. (2013). New wideband printed antennas for medical applications. IEEE Transactions on Antennas and Propagation, 61(1), 84–91. https://doi.org/10.1109/TAP.2012.2214993
  • Schmidt, C., Casado, F., Arriola, A., Ortego, I., Bradley, P. D., & Valderas, D. (2014). Broadband UHF implanted 3-D conformal antenna design and characterization for in-off body wireless links. IEEE Transactions on Antennas and Propagation, 62(3), 1433–1444. https://doi.org/10.1109/TAP.2013.2295816
  • Schwartz, R. (n.d.). Measurement of Dielectric Material Properties Application Note Products.
  • Sun, G., Muneer, B., Li, Y., & Zhu, Q. (2018). Ultracompact Implantable Design with Integrated Wireless Power Transfer and RF Transmission Capabilities. IEEE Transactions on Biomedical Circuits and Systems, 12(2), 281–291. https://doi.org/10.1109/TBCAS.2017.2787649
  • Top, R. (2017). A transmitter microstrip antenna design and application towards the detection of heart disease parameters. Selcuk University.
  • Yang, Q., Zhang, X., Wang, N., Bai, X., Li, J., & Zhao, X. (2011). Cavity-backed circularly polarized self-phased four-loop antenna for gain enhancement. IEEE Transactions on Antennas and Propagation, 59(2), 685–688. https://doi.org/10.1109/TAP.2010.2096395
  • Yang, Z. J., & Xiao, S. (2018a). A wideband implantable antenna for 2.4 GHz ISM band biomedical application. 2018 IEEE International Workshop on Antenna Technology, IWAT2018 - Proceedings, 1–3. https://doi.org/10.1109/IWAT.2018.8379168
  • Yang, Z. J., & Xiao, S. (2018b). A wideband implantable antenna for 2.4 GHz ISM band biomedical application. 2018 IEEE International Workshop on Antenna Technology, IWAT2018 - Proceedings, 1–3. https://doi.org/10.1109/IWAT.2018.8379168