Küresel hastalık tezgahından başucu araştırmasına yönelik moleküler teknolojideki mikroRNA'lar

MikroRNA'lar, kodlamayan RNA düzensizliklerinin bir kategorisi, kanser, diyabet, kalp hastalıkları, immünolojik bozukluklar, nörolojik hastalıklar ve birçok metabolik hastalık dahil olmak üzere çok sayıda patolojik durumda yer alır. MikroRNA uygulamaları bilgisindeki ilerleme, bazı erken hastalık belirteçlerinin teşhisine yol açtı. Halihazırda yenilikçi moleküler biyoteknoloji, yaşamı tehdit eden hastalıklarla mücadele için mikroRNA susturucuları ve inhibitörleri, ikame ediciler ve aşırı ifade edicilerin uygulanması alanında gelecek vaat ediyor. Kanser alanındaki mega hasta gruplarının RNA dizi kütüphaneleri, çoklu mikroRNA'ların ekspresyon profilini içerir, ancak diğer hastalıklarda da bu tür mikroRNA kütüphanelerini geliştirmek için zamana ihtiyaç vardır. Gelecekte bilim adamlarının basit biyoinformatik analizi ile çoklu klinik senaryolarda mikroRNA uygulamalarının perspektifini yargılamasını kolaylaştıracaktır.

MicroRNAs in molecular technology to address global diseases bench to bedside research

MicroRNAs a category of noncoding RNA dysregulations are involved in numerous pathological conditions including cancer, diabetes, heart diseases, immunological disorders, neurological diseases and many metabolic diseases. Advancement in the knowledge of microRNA applications led to the diagnosis of some early markers of diseases. Currently innovative molecular biotechnology is holding promising future in the field of application of microRNA silencers and inhibitors, replacers and over expressers for tackling life threatening diseases. RNA seq libraries of mega patients groups in the field of cancer include the expression profile of multiple microRNAs but there is need of time to develop such libraries of miRNAs in other diseases too. It will facilitate scientist in future to judge the perspective of microRNA applications in multiple clinical scenarios by simple bioinformatics analysis.

___

  • Mushtaq I, Ishtiaq A, Ali T, Jan MI, Murtaza I. An Overview of Non-coding RNAs and Cardiovascular System. J Non-coding RNAs in Cardiovascular Diseases 2020:3-45.
  • Ali T, Mushtaq I, Maryam S, Farhan A, Saba K, Jan MI, et al. Interplay of N acetyl cysteine and melatonin in regulating oxidative stress-induced cardiac hypertrophic factors and microRNAs. J Archives of biochemistry biophysics. 2019;661:56-65.
  • Çakmak HA, Demir M. MicroRNA and cardiovascular diseases. J Balkan medical journal. 2020;37(2):60.
  • Di Z, Di M, Fu W, Tang Q, Liu Y, Lei P, et al. Integrated analysis identifies a nine-microRNA signature biomarker for diagnosis and prognosis in colorectal cancer. J Frontiers in genetics 2020;11:192.
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. J CA: a cancer journal for clinicians 2021;71(3):209-49.
  • Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Journal of the American College of Cardiology 2020;76(25):2982-3021.
  • Jose J, Kumar R, Harilal S, Mathew GE, Prabhu A, Uddin MS, et al. Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. J Environmental Science Pollution Research. 2020;27(16):19214-25.
  • Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. J Canadian journal of physiology pharmacology 2020;98(2):74-84.
  • Zheng H, Zhang G, Zhang L, Wang Q, Li H, Han Y, et al. Comprehensive review of web servers and bioinformatics tools for cancer prognosis analysis. J Frontiers in oncology 2020;10:68.
  • Das S, Shah R, Dimmeler S, Freedman JE, Holley C, Lee J-M, et al. Noncoding RNAs in cardiovascular disease: current knowledge, tools and technologies for investigation, and future directions: a scientific statement from the american heart association. J Circulation: Genomic Precision Medicine 2020;13(4):e000062.
  • Nam S, Kim B, Shin S, Lee S. miRGator: an integrated system for functional annotation of microRNAs. Nucleic acids research. 2007;36(suppl_1):D159-D64.
  • Lu T-P, Lee C-Y, Tsai M-H, Chiu Y-C, Hsiao CK, Lai L-C, et al. miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. 2012.
  • Liu H, Yue D, Chen Y, Gao S-J, Huang Y. Improving performance of mammalian microRNA target prediction. BMC bioinformatics. 2010;11(1):1-15.
  • Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome biology. 2010;11(8):1-14.
  • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nature genetics. 2007;39(10):1278-84.
  • Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015;4:e05005.
  • Malhowski AJ, Hira H, Bashiruddin S, Warburton R, Goto J, Robert B, et al. Smooth muscle protein-22-mediated deletion of Tsc1 results in cardiac hypertrophy that is mTORC1-mediated and reversed by rapamycin. J Human molecular genetics 2011;20(7):1290-305.
  • Cheung AS, de Rooy C, Levinger I, Rana K, Clarke MV, How JM, et al. Actin alpha cardiac muscle 1 gene expression is upregulated in the skeletal muscle of men undergoing androgen deprivation therapy for prostate cancer. J The Journal of steroid biochemistry molecular biology 2017;174:56-64.
  • Zhang X, Kang X, Jin L, Bai J, Zhang H, Liu W, et al. ABCC9, NKAPL, and TMEM132C are potential diagnostic and prognostic markers in triple‐negative breast cancer. J Cell Biology International 2020;44(10):2002-10.
  • Zhang B, Cheng X, Zhan S, Jin X, Liu T. MIB1 upregulates IQGAP1 and promotes pancreatic cancer progression by inducing ST7 degradation. J Molecular Oncology 2021.
  • Zhang Y, Jin W, Ma D, Cao J, Fu T, Zhang Z, et al. Long non-coding RNA CYTOR regulates proliferation and metastasis of colon cancer cells through regulating miRNA-105/PTEN axis. International journal of clinical and experimental pathology. 2021;14(4):434.
  • Zhang T, Beeharry MK, Wang Z, Zhu Z, Li J, Li C. YY1-modulated long non-coding RNA SNHG12 promotes gastric cancer metastasis by activating the miR-218-5p/YWHAZ axis. International journal of biological sciences. 2021;17(7):1629.
  • Li Y, Shi B, Dong F, Zhu X, Liu B, Liu Y. LncRNA KCNQ1OT1 facilitates the progression of bladder cancer by targeting MiR-218-5p/HS3ST3B1. Cancer Gene Therapy. 2021;28(3):212-20.
  • Szabadosova V, Boronova I, Ferenc P, Tothova I, Bernasovska J, Zigova M, et al. Analysis of selected genes associated with cardiomyopathy by next‐generation sequencing. J Journal of clinical laboratory analysis 2018;32(2):e22254.
  • Kawamoto A, Kato T, Shioi T, Okuda J, Kawashima T, Tamaki Y, et al. Measurement of technetium-99m sestamibi signals in rats administered a mitochondrial uncoupler and in a rat model of heart failure. J PloS one. 2015;10(1):e0117091.
  • Mochizuki N, Shimizu S, Nagasawa T, Tanaka H, Taniwaki M, Yokota J, et al. A novel gene, MEL1, mapped to 1p36. 3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t (1; 3)(p36; q21)-positive leukemia cells. J Blood, The Journal of the American Society of Hematology 2000;96(9):3209-14.
  • Kiuru M, Busam KJ. The NF1 gene in tumor syndromes and melanoma. J Laboratory investigation. 2017;97(2):146-57.
  • Eguchi T, Prince TL, Tran MT, Sogawa C, Lang BJ, Calderwood SKJC. MZF1 and SCAND1 Reciprocally Regulate CDC37 Gene Expression in Prostate Cancer. J Cancers 2019;11(6):792.
  • Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. J JNCI: Journal of the National Cancer Institute 2017;109(8).
  • Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, et al. Clinical implications of PTEN loss in prostate cancer. J Nature Reviews Urology. 2018;15(4):222-34.
  • Wu S, Lu D, Zheng X, Xu J, Li Z, Deng L, et al. Dysregulation of autophagy-associated microRNAs in condyloma acuminatum. Infection, Genetics and Evolution. 2021:104878.
  • Kostyniuk DJ, Mennigen JA. Meta-analysis of differentially-regulated hepatic microRNAs identifies candidate post-transcriptional regulation networks of intermediary metabolism in rainbow trout. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics. 2020;36:100750.
  • Yin M, Lu J, Guo Z, Zhang Y, Liu J, Wu T, et al. Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages. Aging (Albany NY). 2021;13(3):3428.
  • Wu X, Cheng Y-SL, Matthen M, Yoon A, Schwartz GK, Bala S, et al. Down-regulation of the tumor suppressor miR-34a contributes to head and neck cancer by up-regulating the MET oncogene and modulating tumor immune evasion. Journal of Experimental & Clinical Cancer Research. 2021;40(1):1-16.
  • Wen H-L, Xu Z-M, Lin S-Y, Wen D, Xie JP. miR-597-3p inhibits invasion and migration of thyroid carcinoma SW579 cells by targeting RAB23. Endokrynologia Polska. 2021;72(1):22-8.
  • Duan J, Qian Y, Fu X, Chen M, Liu K, Liu H, et al. TMEM106C contributes to the malignant characteristics and poor prognosis of hepatocellular carcinoma. Aging (Albany NY). 2021;13(4):5585.
  • Cao J-Y, Wang B, Tang T-T, Wen Y, Li Z-L, Feng S-T, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics. 2021;11(11):5248.
  • Lu Z, Wu Z, Hu J, Wei W, Ma B, Wen D. MicroRNA-15 regulates the proliferation, migration and invasion of thyroid cancer cells by targeting Bcl-2. J Journal of BU ON: official journal of the Balkan Union of Oncology 2019;24(5):2114-9.
  • Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: from gene discovery to treatment. J Cell Death Differentiation 2018;25(1):21-6.
  • Wang Z, Yan K, Ge G, Zhang D, Bai J, Guo X, et al. Exosomes derived from miR-155-5p–overexpressing synovial mesenchymal stem cells prevent osteoarthritis via enhancing proliferation and migration, attenuating apoptosis, and modulating extracellular matrix secretion in chondrocytes. Cell Biology and Toxicology. 2021;37(1):85-96.
  • Deris Zayeri Z, Tahmasebi Birgani M, Mohammadi Asl J, Kashipazha D, Hajjari M. A novel infram deletion in MSH6 gene in glioma: Conversation on MSH6 mutations in brain tumors. J Journal of cellular physiology. 2019;234(7):11092-102.
  • Xie C, Sheng H, Zhang N, Li S, Wei X, Zheng X. Association of MSH6 mutation with glioma susceptibility, drug resistance and progression. J Molecular clinical oncology 2016;5(2):236-40.
  • Yang YL, Liu P, Li D, Yang Q, Li B, Jiang XJ. Stat‐3 signaling promotes cell proliferation and metastasis of gastric cancer through PDCD4 downregulation. J The Kaohsiung journal of medical sciences 2020;36(4):244-9.
  • He S, Li Z, Yu Y, Zeng Q, Cheng Y, Ji W, et al. Exosomal miR-499a-5p promotes cell proliferation, migration and EMT via mTOR signaling pathway in lung adenocarcinoma. J Experimental cell research. 2019;379(2):203-13.
  • Xu J, Su Z, Ding Q, Shen L, Nie X, Pan X, et al. Inhibition of proliferation by knockdown of Transmembrane (TMEM) 168 in Glioblastoma cells via suppression of Wnt/β-catenin pathway. J Oncology research 2019;27(7):819.
  • Qiu G, Sun W, Zou Y, Cai Z, Wang P, Lin X, et al. RNA interference against TMEM97 inhibits cell proliferation, migration, and invasion in glioma cells. J Tumor Biology 2015;36(10):8231-8.
  • Harati R, Hafezi S, Mabondzo A, Tlili A. Silencing miR-202-3p increases MMP-1 and promotes a brain invasive phenotype in metastatic breast cancer cells. J PloS one. 2020;15(10):e0239292.
  • Liu H, Zhao Y-R, Chen B, Ge Z, Huang J-S. High expression of SMARCE1 predicts poor prognosis and promotes cell growth and metastasis in gastric cancer. J Cancer management research. 2019;11:3493.
  • Sokol ES, Feng Y-X, Jin DX, Tizabi MD, Miller DH, Cohen MA, et al. SMARCE1 is required for the invasive progression of in situ cancers. J Proceedings of the National Academy of Sciences 2017;114(16):4153-8.
  • Ge T, Yin M, Yang M, Liu T, Lou G. MicroRNA-302b suppresses human epithelial ovarian cancer cell growth by targeting RUNX1. J Cellular physiology biochemistry. 2014;34(6):2209-20.
  • Wang L, Yao J, Shi X, Hu L, Li Z, Song T, et al. MicroRNA-302b suppresses cell proliferation by targeting EGFR in human hepatocellular carcinoma SMMC-7721 cells. J BMC cancer. 2013;13(1):1-9.
  • Fareh M, Almairac F, Turchi L, Burel-Vandenbos F, Paquis P, Fontaine D, et al. Cell-based therapy using miR-302-367 expressing cells represses glioblastoma growth. J Cell death 2017;8(3):e2713-e.
  • Wang L, Liu Y, Song J. MicroRNA-103 suppresses glioma cell proliferation and invasion by targeting the brain-derived neurotrophic factor. J Molecular medicine reports. 2018;17(3):4083-9.
  • Chen L-P, Zhang N-N, Ren X-Q, He J, Li Y. miR-103/miR-195/miR-15b regulate SALL4 and inhibit proliferation and migration in glioma. J Molecules 2018;23(11):2938.
  • Cockey E, Ullrich N. Neurofibromatosis type 1-associated brain tumors. J Journal of Rare Diseases Research Treatment. 2016;1(2).
  • van Oort RJ, Respress JL, Li N, Reynolds C, De Almeida AC, Skapura DG, et al. Accelerated development of pressure overload–induced cardiac hypertrophy and dysfunction in an RyR2-R176Q knockin mouse model. J Hypertension 2010;55(4):932-8.
  • Belevych AE, Sansom SE, Terentyeva R, Ho H-T, Nishijima Y, Martin MM, et al. MicroRNA-1 and-133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. J PloS one. 2011;6(12):e28324.
  • Terentyev D, Belevych AE, Terentyeva R, Martin MM, Malana GE, Kuhn DE, et al. miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56α and causing CaMKII-dependent hyperphosphorylation of RyR2. J Circulation research 2009;104(4):514-21.