Akışkan Dental Kompozitin Gamma Radyasyonu Soğurma Özellikleri

Bu çalışma, insan vücudunda doğal veya sentetik malzeme olarak kullanılan akışkan dental kompozitin radyasyon soğurma özelliklerinin Monte Carlo yöntemi kullanılarak hesaplanması ve XCOM sonuçları ile karşılaştırmayı amaçlamaktadır. Lineer soğurma katsayısından elde edilen veriler ile ortalama serbest yol (MFP), yarı değer kalınlığı (HVL) ve onda bir değer kalınlığı (TVL) gibi parametreler de elde edilmiştir. GAMOS 6.2 programı ile gerçekleştirilen simülasyonlarda, disk şeklinde bir soğurucu malzeme üzerine gönderilen noktasal foton kaynak geometrisi kullanılmıştır. 1 keV-20 MeV aralığında otuz altı farklı foton enerjisinde gerçekleştirilmiş ve XCOM verileri ile karşılaştırılmış ve uyumlu bulunmuştur. Bu yöntemin lineer soğurma katsayıları literatürde yer almayan malzeme bileşimleri ve enerji değerleri için alternatif bir hesaplama aracı olarak güvenle kullanılabileceği düşünülmektedir.

Gamma Radiation Absorption Properties of Fluid Dental Composite

This study presents the radiation absorption properties of fluid dental composite was investigated computationally and experimentally. In the computational part of the study, I and I0 values were obtained for biomaterial by using the Gamos 6.2 simulation program. The results calculated with the GAMOS simulation program were compared with the XCOM data. In addition to (μ) and (μ/ρ) values, half value layer (HVL), tenth value layer (TVL) and mean free path (MFP) quantities were obtained which are important in terms of radiation absorption properties. The simulation results were found to be compatible with XCOM data for this composit biomaterial. The simulation results showed that the Monte Carlo technique can be used as an alternative to calculate the mass absorption coefficients at the requested gamma energy, especially for samples that are physically difficult to produce. Keywords: GAMOS, XCOM, biomaterial, linear attenuation coefficients

___

  • Attix, F.H., Introduction to radiological physics and radiation dosimetry. 2008: John Wiley & Sons.
  • Hendee, W.R. and E.R. Ritenour, Medical imaging physics. 2003: John Wiley & Sons.
  • Al-Buriahi, M.S., H. Arslan, and B.T. Tonguç, Mass attenuation coefficients, water and tissue equivalence properties of some tissues by Geant4, XCOM and experimental data. Indian Journal of Pure & Applied Physics (IJPAP), 2019. 57(6): p. 433-437.
  • Phelps, M.E., E.J. Hoffman, and M.M. Ter-Pogossian, Attenuation coefficients of various body tissues, fluids, and lesions at photon energies of 18 to 136 keV. Radiology, 1975. 117(3): p. 573-583.
  • Sahin, A. and A. Bozkurt, Monte Carlo Calculation of Mass Attenuation Coefficients of Some Biological Compounds. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 2019. 14(2): p. 408-417.
  • Akkurt, I., R.B. Malidarre, and T. Kavas, Monte Carlo simulation of radiation shielding properties of the glass system containing Bi 2 O 3. The European Physical Journal Plus, 2021. 136(3): p. 1-10.
  • Al-Hadeethi, Y. and M.I. Sayyed, Gamma radiation attenuation characteristics for lithium-zinc-tellurite glasses using Geant4 code and PDS computer software. Ceramics International, 2021. 47(2): p. 1660-1665.
  • Kurtulus, R., et al., The effect of Nb 2 O 5 on waste soda‐lime glass in gamma‐rays shielding applications. Journal of Materials Science: Materials in Electronics, 2021. 32(4): p. 4903-4915.
  • Bozkurt, A. and A. Sahin, Monte Carlo Approach for Calculation of Mass Energy Absorption Coefficients of Some Amino Acids. Nuclear Engineering and Technology, 2021.
  • Sengul, A. and A. Bozkurt, Bazı Biyolojik Bileşiklerin Kütlesel Enerji Soğurma Katsayılarının Monte Carlo Yöntemiyle Hesaplanması. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 2021. 16(2): p. 416-423.
  • Ermis, E., et al., A comprehensive study for mass attenuation coefficients of different parts of the human body through Monte Carlo methods. Nuclear Science and Techniques, 2016. 27(3): p. 54.
  • Gunoglu, K. and İ. Akkurt, Radiation shielding properties of concrete containing magnetite. Progress in Nuclear Energy, 2021. 137: p. 103776.
  • Akkurt, I. and H. Akyıldırım, Radiation transmission of concrete including pumice for 662, 1173 and 1332 keV gamma rays. Nuclear Engineering and Design, 2012. 252: p. 163-166.
  • Rogers, D., Fifty years of Monte Carlo simulations for medical physics. Physics in Medicine & Biology, 2006. 51(13): p. R287.
  • Meral, M., Çok İşlevli Uyluk Çivisi Tasarımı, Üretimi Ve Mekanik Özellikleri. 2013, Fen Bilimleri Enstitüsü.
  • Park, J. and R.S. Lakes, Biomaterials: an introduction. 2007: Springer Science & Business Media.
  • Andreo, P., Monte Carlo techniques in medical radiation physics. Physics in Medicine & Biology, 1991. 36(7): p. 861.
  • Ubuntu. 2021; Available from: https://ubuntu.com/download/desktop.
  • Arce, P., et al., Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014. 735: p. 304-313.
  • Berger, M., et al., XCOM: Photon Cross Sections Database. NIST, PML, Radiation Physics Division. 2019.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç