Optimal Bağlantı Kriterlerine Göre Güneş Enerji Santrallerinin Şebeke Entegrasyonu ve Ada Modunda Çalışmada Kritik Yüklerin Enerjilendirilmesi

Akıllı şebeke bileşenlerinin ve yenilenebilir enerji kaynaklarının artması ile birlikte konvansiyonel şebekelere eklemeler veiyileştirmeler yapılması kaçınılmaz olmuştur. Yenilenebilir enerji kaynaklarının sayısının artması ile birlikte şebeke üzerinde olanetkileri de katlanarak artmaktadır. Şebekede stabiliteyi korumak ve yenilenebilir enerji kaynaklarını optimal şekildekonumlandırabilmek için gerekli analizler gerçekleştirilmeli ve yenilenebilir enerji santrallerinin şebeke entegrasyonu bu kriterler bazalınarak sağlanılmalıdır. Stabilite ve optimal konumlandırma kriterlerinin yanı sıra dikkate alınması gereken diğer bir faktör ise adamodunda çalışma ve kritik yüklerin optimal şekilde enerjilendirilmesinin sağlanmasıdır. Gerçekleştirilen çalışmada IEEE 13 baralı testsistemi bir mahalle şebekesi olarak kullanılıp güneş enerji santrali (GES) entegrasyonu gerçekleştirilmiştir. Entegrasyon esnasındaoptimal bağlantı noktası seçimi, gerilim regülasyonu, hat kayıplarının azaltılması ve ada modunda çalışma kriterleri göz önünealınmıştır. Kurulan şebeke modeli ve GES modelinin entegrasyonu ile optimal bağlantı kriteri sağlanmış ve şebekede meydana gelmesimuhtemel bir arıza esnasında kritik yüklerin GES ada modunda çalışma fonksiyonu ile enerjilendirilmesi sağlanmıştır.

Integration of Solar Power Plants to Grid with Optimal Connection Criteria and Energization of Critical Loads in Island Mode Operation

The improvements and additional equipment implementation demand for the conventional grids are on increase as a result of the increase of the number of renewable power plants and smart grid components. The effect of the renewable power plants on the grid are on increase exponentially as the increase on the number of the renewable power plants. In order to keep the grid stable and integrate the renewables to the grid optimally, necessary analysis have to be realized and the optimal integration criteria have to be investigated carefully. The other optimal integration factors are eligibility for island mode operation and energization of critical loads during a possible fault event along with grid stability and voltage regulation criteria. In this study, IEEE 13 bus test system is built in simulation environment as a district model along with a solar power plant (SPP) model and the SPP is integrated to existing district network. The optimal integration criteria of maintaining voltage regulation in a reasonable level, reducing line losses and the eligibility of island mode operation are investigated during the study steps. The optimal integration criteria are met as the result of the analysis on the simulated grid model and SPP integration study along with energization of critical loads during a grid blackout.

___

  • Atasoy, T., Akınç, H. E., Erçin, Ö. 2015. An Analysis on Smart Grid Applications and Grid Integration of Renewable Energy Systems in Smart Cities. 2015 International Conference on Renewable Energy Research and Applications (ICRERA), 22-25 Nov, 2015, Palermo, Italy.
  • Baba, T., Mizuno, Y., Tanaka, Y., Kurokawa, F., Tanaka, M., Colak, I., Matsui, N. 2017. Comparison of optimum energy scheduling of emergency generators of a large hospital with renewable energy system using mathematical programming method. IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 5-8 Nov, 2017, San Diego, USA.
  • Chen, J., Zhu, Q. 2017. A Game-Theoretic Framework for Resilient and Distributed Generation Control of Renewable Energies in Microgrids. IEEE Transactions on Smart Grid 8(1), 285-295.
  • Gottwalt, S., Garttner, J., Schmeck, H., Weinhardt, C. 2017. Modeling and Valuation of Residential Demand Flexibility for Renewable Energy Integration. IEEE Transactions on Smart Grid 8(6), 2565-2574.
  • Gu, H. 2016. Maximum instantaneous renewable energy integration of power grids. 2016 Australasian Universities Power Engineering Conference (AUPEC), 25-28 Sept, 2016, Brisbane, Australia.
  • Gunkel, D., Möst, D. 2014. The German transmission grid expansion in long-term perspective — What is the impact of renewable integration. 11th International Conference on the European Energy Market (EEM14), 28-30 May, 2014, Krakow, Poland.
  • Hamdaoui, Y., Maach, A. 2017. An intelligent islanding selection algorithm for optimizing the distribution network based on emergency classification. International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 19-20 April, 2017, Fez, Morroco.
  • IEEE Radial Distribution Test Feeders, http://ewh.ieee.org/soc/pes/dsacom/testfeeders.html.
  • Kyocera Photovoltaic Panel Data Sheet, http://www.kyocerasolar.com/dealers/productcenter/archives/spec-sheets/KD205GX-LP.pdf?
  • Li, Y., Tian, X., Liu, C., Su, Y., Li, L., Zhang, L., Sun, Y., Li, J. 2017. Study on voltage control in distribution network with renewable energy integration. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), 26-28 Nov, 2017, Beijing, China.
  • Mizuno, Y., Baba, T., Tanaka, Y., Kurokawa, F., Tanaka, M., Colak, I., Matsui, N. 2017. Estimation of optimum capacity of battery by combined use of a renewable energy system and distributed emergency generators in a large hospital. IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 5-8 Nov, 2017, San Diego, USA.
  • Mukhopadhyay, S., Soonee, S. K., Singh, B., Senghal, Y. K. 2013. Opportunities and problems of Smart Grids with large penetration of renewable energy - Indian perspective. 2013 IEEE Power & Energy Society General Meeting, 21-25 July, 2013, Vancouver, Canada.
  • Pramono, E. Y., Isnandar, S. 2017. Criteria for Integration of Intermittent Renewable Energy to the Java Bali Grid . 2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS), 2-5 Oct, 2017, Bali, Indonesia.
  • Rahbar, K., Chai, C. C., Zhang, R. 2016. Energy Cooperation Optimization in Microgrids With Renewable Energy Integration. IEEE Transactions on Smart Grid 9(2), 1482- 1493.
  • Rahbar, K., Xu, J., Zhang, R. 2014. Real-Time Energy Storage Management for Renewable Integration in Microgrid: An Off-Line Optimization Approach. IEEE Transactions on Smart Grid 6(1), 124-134.
  • Rehmani, M. H., Reisslein, M., Rachedi, A., Erol-Kantarci, M., Radenkovic, M. 2018. Integrating Renewable Energy Resources Into the Smart Grid: Recent Developments in Information and Communication Technologies. IEEE Transactions on Industrial Informatics 14(7), 2814-2825.
  • Telekunta, V., Pradhan, J., Agrawal, A., Manohar, S., Srivani, S. G. 2017. Protection challenges under bulk penetration of renewable energy resources in power systems: A review. CSEE Journal of Power and Energy Systems 3(4), 365-379.
  • Usova, M., Velkin, V. 2018. Possibility to use renewable energy sources for increasing the reliability of the responsible energy consumers on the enterprise. 17th International Ural Conference on AC Electric Drives (ACED), 26-30 March, 2018, Ekaterinburg, Russia.
  • Vu, T. L., Nguyen, H. D., Megretski, A., Slotine, J., Turitsyn, K. 2018. Inverse Stability Problem and Applications to Renewables Integration. IEEE Control Systems Letters 2(1), 133-138.
  • Yan, X., Lin, X., Qin, L., Han, S., Gao, L., Yang, Y., Zeng, B. 2017. Control strategy for wind power integration base on energy demand respond and distributed energy storage. The Journal of Engineering 2017(13), 2374-2377.
  • Yi, W., Zhang, Y., Zhao, Z., Huang, Y. 2018. Multiobjective Robust Scheduling for Smart Distribution Grids: Considering Renewable Energy and Demand Response Uncertainty. IEEE Access 6, 45715-45724.
  • Yu, F. R., Zhang, P., Xiao, W., Choudhury P. 2011. Communication Systems for Grid Integration of Renewable Energy Resources. IEEE Network 25(5), 22-29.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç