Optik Akış Görüntüsü ve Bi-Lstm ile Şiddet İçeren Hareketlerin Sınıflandırılması

Otomatik hareket tanıma sistemlerine ihtiyaç, güvenlik kameralarının sayısındaki hızlı artıştan dolayı giderek artmaktadır. Harekettanıma, bilgisayarlı görü alanında güncel bir araştırma alanı olmasına karşın şiddet içeren sahnelerin tespiti insan ve toplum güvenliğiylede ilişkili olması sebebiyle büyük önem taşımaktadır. Optik akış video görüntülerindeki hareketlerin tespit ve modellenmesinde sıklıklakullanılan bir yaklaşımdır. Bu çalışmada optik akış ve derin öğrenme kullanılarak şiddet içeren aktivitelerin tanınmasındakullanılabilecek bir yöntem önerilmiştir. Bir video serisine ait optik akış serisinin bileşenleri birleştirilerek üç kanallı bir görüntü halinegetirilmiş ve önceden eğitilmiş VGG-16 evrişimsel (convolutional) sinir ağına girdi olarak verilmiştir. VGG-16 ağından elde edilenderin nitelik serileri ile bir Bi-Lstm (Bidirectional long short term memory) sınıflayıcısı eğitilmiştir. Önerilen yöntem literatürde yeralan iki farklı veri kümesi ile test edilmiş ve literatürde yer alan diğer yaklaşımlar ile karşılattırılabilir ve daha yüksek sınıflamabaşarımına sahip sonuçlar elde edilmiştir.

Classification of Violent Activities with Optical Flow Image and Bi-Lstm

The need for automated motion recognition systems is increasing due to the rapid increase in the number of security cameras. Although motion recognition is a hot topic in the field of computer vision, the classification of violent scenes is of great importance due to its relation to human and community safety. Optical flow is often used in the detection and modeling of motion in video images. In this study, a method that can be used to recognize violent activities using optical flow and deep learning has been proposed. The components of the optical flow series of a video series were combined into a 3-channel image and pre-trained VGG-16 was input into the convulsive neural network. A Bi-Lstm (Bidirectional long short term memory) classifier has been trained with the deep quality series derived from the VGG-16 network. The proposed method was tested with two different data sets in the literature and comparable and higher classifying results were obtained.

___

  • Keçeli AS, Kaya A, Can AB (2017) Depth features to recognise dyadic interactions. Iet Comput Vis 12 (3):331-339 2. Herath S, Harandi M, Porikli F (2017) Going deeper into action recognition: A survey. Image and vision computing 60:4- 21
  • Nam J, Alghoniemy M, Tewfik AH Audio-visual contentbased violent scene characterization. In: Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on, 1998. IEEE, pp 353-357
  • Clarin C, Dionisio J, Echavez M, Naval P (2005) DOVE: Detection of movie violence using motion intensity analysis on skin and blood. PCSC 6:150-156
  • Gong Y, Wang W, Jiang S, Huang Q, Gao W Detecting violent scenes in movies by auditory and visual cues. In: Pacific-Rim Conference on Multimedia, 2008. Springer, pp 317-326
  • Lin J, Wang W Weakly-supervised violence detection in movies with audio and video based co-training. In: Pacific-Rim Conference on Multimedia, 2009. Springer, pp 930-935
  • Kooij JF, Liem M, Krijnders JD, Andringa TC, Gavrila DM (2016) Multi-modal human aggression detection. Computer Vision and Image Understanding 144:106-120
  • Hassner T, Itcher Y, Kliper-Gross O Violent flows: Real-time detection of violent crowd behavior. In: Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on, 2012. IEEE, pp 1-6
  • Gao Y, Liu H, Sun X, Wang C, Liu Y (2016) Violence detection using Oriented VIolent Flows. Image and Vision Computing 48:37-41
  • Rota P, Conci N, Sebe N, Rehg JM Real-life violent social interaction detection. In: Image Processing (ICIP), 2015 IEEE International Conference on, 2015. IEEE, pp 3456-3460
  • Lloyd K, Marshall D, Moore SC, Rosin PL (2016) Detecting Violent Crowds using Temporal Analysis of GLCM Texture. arXiv preprint arXiv:160505106
  • Arceda VM, Ferna K, Guti J (2016) Real time violence detection in video.
  • Dai Q, Zhao R-W, Wu Z, Wang X, Gu Z, Wu W, Jiang Y-G Fudan-Huawei at MediaEval 2015: Detecting Violent Scenes and Affective Impact in Movies with Deep Learning. In: MediaEval, 2015.
  • Keceli AS, Kaya A (2017) Violent activity detection with transfer learning method. Electron Lett 53 (15):1047-1048. doi:10.1049/el.2017.0970
  • Roy PK, Om H (2018) Suspicious and Violent Activity Detection of Humans Using HOG Features and SVM Classifier in Surveillance Videos. In: Advances in Soft Computing and Machine Learning in Image Processing. Springer, pp 277-294
  • Bruhn A, Weickert J, Schnörr C (2005) Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. Int J Comput Vision 61 (3):211-231
  • Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing 45 (11):2673- 2681
  • Keçeli AS, Keçeli SU, Kaya A Classification of radiolarian fossil images with deep learning methods. In: 2018 26th Signal Processing and Communications Applications Conference (SIU), 2018. IEEE,
  • Shie CK, Chuang CH, Chou CN, Wu MH, Chang EY (2015) Transfer Representation Learning for Medical Image Analysis. Ieee Eng Med Bio:711-714
  • Shin HC, Roth HR, Gao MC, Lu L, Xu ZY, Nogues I, Yao JH, Mollura D, Summers RM (2016) Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. Ieee T Med Imaging 35 (5):1285-1298
  • Yeffet L, Wolf L Local trinary patterns for human action recognition. In: Computer Vision, 2009 IEEE 12th International Conference on, 2009. IEEE, pp 492-497
  • Keceli AS, Kaya A, Keceli SU (2017) Classification of radiolarian images with hand-crafted and deep features. Computers & Geosciences 109:67-74. doi:10.1016/j.cageo.2017.08.011