Nikel-Metal Hidrit ve Lityum-iyon Piller Arasındaki Empedans Spektroskopisinin Karşılaştırmalı Çalışması

Yaygın olarak kullanılan iki ticari şarj edilebilir pil, nikel-metal hidrit pil ve lityum-iyon pil, hızlı ve etkili bir elektrokimyasal yöntem olan empedans spektroskopisi tekniği ile incelenmiştir. Bu piller aynı potansiyele getirilerek eşit frekans aralığındaki elektrokimyasal empedans özellikleri karşılaştırılmıştır. Pillerin elektrokimyasal karakterizasyonu empedans analizi ve eşdeğer devre modellemesi ile yapılmıştır. Ayrıca geliştirilen eşdeğer devre tabanlı matematiksel model ile enerji depolama sistemleri için önemli olan fiziksel parametreler elde edilmiştir. Elde edilen parametreler, enerji depolama sistemlerinde pil seçimini önemli ölçüde belirleyen pil performansı ve kapasite özellikleri açısından karşılaştırılmıştır. Bu işlemler sonucunda lityum-iyon pilin batarya dinamiği açısından nikel-metal hidrit pile göre birçok avantajı olduğu tespit edilmiştir. Ayrıca, bu çalışmada kullanılan yöntem ve elde edilen modelin laboratuvar ölçekli ve ticari olmayan pillerin geliştirilmesine ve enerji ihtiyacını karşılama kabiliyetlerinin belirlenmesine temel oluşturabileceği düşünülmektedir.

Comparative Study of Impedance Spectroscopy Between Nickel-Metal Hydride and Lithium-ion Batteries

Two commonly used commercially available rechargeable batteries, nickel-metal hydride battery and lithium-ion battery, have been investigated by impedance spectroscopy technique, which is a fast and an effective electrochemical method. These batteries were brought to the same potential and their electrochemical impedance properties in the equal frequency range were compared. The electrochemical characterization of the batteries was done by impedance analysis and equivalent circuit modeling. In addition, the physical parameters that are important for energy storage systems have been obtained with the developed equivalent circuit based mathematical model. The obtained parameters were compared in terms of battery performance and capacity characteristics that significantly determine the selection of batteries in energy storage systems. As a result of these processes, it has been determined that the lithium-ion battery has many advantages over the nickel-metal hydride battery in terms of battery dynamics. Furthermore, it is thought that the method used and the model obtained in this study can form the basis for the development of laboratory-scale and non-commercial batteries and to determine their ability to meet energy needs.

___

  • Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., “Challenges in the development of advanced Li-ion batteries: a review”, Energ. Environ. Sci., 4 (9), 3243-3262, 2011.
  • Din, E., Schaef, C., Moffat, K., Stauth, J.T., “A scalable active battery management system with embedded real-time electrochemical impedance spectroscopy”, IEEE T. Power Electr., 32 (7), 5688-5698, 2017.
  • Mulder, G., Omar, N., Pauwels, S., Meeus, M., Leemans, F., Verbrugge, B., De Nijs, W., Van den Bossche, P., Six, D., Van Mierlo, J., “Comparison of commercial battery cells in relation to material properties”, Electrochim. Acta, 87, 473-488, 2013.
  • Zhu, W.H., Zhu, Y., Tatarchuk, B.J., “Self-discharge characteristics and performance degradation of Ni-MH batteries for storage applications”, Int. J. Hydrogen Energ., 39 (34), 19789-19798, 2014.
  • Morimoto, K., Nagashima, I., Matsui, M., Maki, H., Mizuhata, M., “Improvement of electrochemical properties and oxidation/reduction behavior of cobalt in positive electrode of Ni-metal hydride battery”, J. Power Sources, 388, 45-51, 2018.
  • Yan, S., Nei, J., Li, P., Young, K.H., Simon Ng, K.Y., “Effects of Cs2CO3 additive in KOH electrolyte used in Ni/MH batteries”, Batteries, 3 (4), 41, 2017.
  • Tarabay, J., Karami, N., “Nickel metal hydride battery: structure, chemical reaction, and circuit model”, Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Beirut, Lebanon, 29 April-1 May, 2015.
  • Ed. Yan J., Rechargeable Battery Energy Storage System Design, Handbook of Clean Energy Systems. Hoboken, NJ, USA: John Wiley & Sons, 2801-2819, 2015, vol. 5.
  • Muenzel, V., Hollenkamp, A.F., Bhatt, A.I., de Hoog, J., Brazil, M., Thomas, D.A., Mareels, I., “A comparative testing study of commercial 18650-format lithium-ion battery cells”, J. Electrochem. Soc., 162 (8), A1592-A1600, 2015.
  • Balasundaram, M., M., Ramar, V., Yap, C., Li, L., Tay, A.A., Balaya, P., “Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell”, J. Power Sources, 328, 413-421, 2016.
  • Piłatowicz, G., Marongiu, A., Drillkens, J., Sinhuber, P. and Sauer, D.U., “A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples”, J. Power Sources, 296, 365-376, 2015.
  • Castano-Solis, S., Serrano-Jimenez, D., Gauchia, L. and Sanz, J. “The influence of BMSs on the characterization and modeling of series and parallel Li-ion packs”, Energies, 10 (3), 273, 2017.
  • Zhu, Y., Zhu, W.H., Davis, Z., Tatarchuk, B.J., “Simulation of Ni-MH batteries via an equivalent circuit model for energy storage applications”, Advances in Physical Chemistry, 2016, 4584781, 2016.
  • Robinson, J.B., Darr, J.A., Eastwood, D.S., Hinds, G., Lee, P.D., Shearing, P.R., Taiwo, O.O. and Brett, D.J., “Non-uniform temperature distribution in Li-ion batteries during discharge-A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach”, J. Power Sources, 252, 51-57, 2014.
  • Galeotti, M., Giammanco, C., Cinà, L., Cordiner, S. and Di Carlo, A., “Synthetic methods for the evaluation of the State of Health (SOH) of nickel-metal hydride (NiMH) batteries”, Energ. Convers. Manage., 92, 1-9. 2015.
  • Wolff, N., Harting, N., Heinrich, M., Röder, F. and Krewer, U., Nonlinear frequency response analysis on lithium-ion batteries: A model-based assessment, Electrochim. Acta, 260, 614-622, 2018.
  • Ferg, E.E., van Vuuren, F., “Comparative capacity performance and electrochemical impedance spectroscopy of commercial AA alkaline primary cells”, Electrochim. Acta, 128, 203-209. 2014.
  • Yang, Q., Xu, J., Cao, B., Li, X., “A simplified fractional order impedance model and parameter identification method for lithium-ion batteries”, Plos One, 12 (2), e0172424, 2017.
  • Erol S., Impedance Spectroscopy Analysis and Modeling of Lithium-ion Batteries, Saarbrücken, Germany: Lambert Academic Publishing, 2016.
  • Pinson, M.B., Bazant, M.Z., “Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction”, J. Electrochem.Soc., 160 (2), A243-A250, 2013.
  • Bisquert J., Compte, A., “Theory of the electrochemical impedance of anomalous diffusion”, J. Electroanal. Chem., 499, 112-120, 2001.
  • Lvovich, V.F., Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena, Hoboken, NJ, USA: John Wiley & Sons, 2012.
  • Erol, S., “Process Model Development of Lithium-ion Batteries—An Electrochemical Impedance Spectroscopy Simulation”, Sakarya University Journal of Science, 24(6), 1191-1197, 2020.
  • Bisquert, J., “Influence of the boundaries in the impedance of porous film electrodes”, Phys. Chem. Chem. Phys., 2 (18), 4185-4192, 2000.