Nar Kabuklarının Döner Tambur Kompostlama SistemindeBiyoaktivatör İle Kompostlanması

Bu çalışma, nar meyvesinin işlenmesi sonrası atık olarak çıkan nar kabuklarının, biyoaktivatör ilavesiyle kompostlaştırma sürecinin,kompostlaşma parametreleri üzerine etkisini belirlemek amacı ile yürütülmüştür. Kompostlaştırma işlemi için 0.38 $m^3$ hacimli egzozgazı geri dönüşümlü ve otomatik kontrollü döner tambur kompostlaştırma sistemi kullanılmıştır. Denemeler süresince; sıcaklık, $CO_2$ konsantrasyonu, kompost materyali nem içeriği, organik madde miktarı, pH düzeyi, elektriksel iletkenlik değeri, toplam azot ve karbondeğişimleri ölçülmüştür. Deneyler toplam 43 gün sürerken, kompostlaşma aşaması 12, olgunlaşma aşaması ise 31 gün sürmüştür.Biyoaktivatör ilaveli reaktörde 55 °C sıcaklığa altıncı günde ulaşıldığı ve bu sıcaklığın yaklaşık 0.25 gün (6 saat) korunabildiği tespitedilmiştir. Biyoaktivatör ilavesiz reaktör içerisinde maksimum 60 °C sıcaklığa ulaşılmış, bu sıcaklığın yaklaşık 1.5 gün korunduğu,55°C’nin üzerindeki sıcaklığın ise sadece 2 gün sürdüğü gözlenmiştir. Organik madde kayıplarının, biyoaktivatör ilaveli ve ilavesizreaktörlerde, kompostlaşma süreci ve olgunlaşma süreci sonunda sırasıyla; %59.24-%14.63 ve %64.32-%2.04 olduğu belirlenmiştir.Sonuç olarak, kompostlaşma işleminde biyoaktivatör kullanımının kompostlama performans parametreleri üzerinde bir fark yaratmadığıvurgulanabilir. Bunun yanında, kompost olgunlaşma başlangıcında yapılacak biyoaktivatör ilavesiyle kompostun daha hızlı bir şekildeolgunlaşabileceği belirlenmiştir.

Composting of Pomegranate Peels with Bioactivator in Rotary Drum Composting System

This study was carried out to determine the effect of composting of pomegranate peels left after processing pomegranate fruit withbioactivator. In the study, 0.38 $m^3$ -automatic controlled rotary drum composting system with exhaust gas recycling was used in thecomposting process. During the experiment, temperature, $CO_2$ concentration, compost moisture, organic matter, pH, electricalconductivity, total nitrogen and carbon changes were measured. The experiments took 43 days, the composting stage was 12 days, andthe maturation stage was 31 days. Results showed that the reactor with bioactivator reached the temperature of 55 °C on the $6^{th}$ day andmaintained this temperature for about 0.25 days (6 hours). The reactor without bioactivator reached a temperature of 60 °C, but it wasable to maintain this temperature for about 1.5 days and the temperature above 55 ° C was only able to maintain for 2 days. Organicmatter losses were determined as 59.24% and 14.63% in the reactor with bioactivator, 64.32% and 2.04% in the reactor withoutbioactivator, respectively, at the end of the composting process and maturation process. In conclusion, when the use of bioactivators incomposting process is evaluated in terms of composting performance parameters (compost temperature, $CO_2$ concentration, moisture,organic matter, pH, electrical conductivity, C/N ratio), it can be said that the bioactivator does not make a difference. In addition, it canbe said that the addition of bioactivators can be made at the beginning of compost maturation to help the compost mature faster.

___

  • Agnolucci, M., Cristani, C., Battini, F., Palla, M., Cardelli, R., Saviozzi, A., Nuti, M. (2013). Microbially-enhanced composting of olive mill solid waste (wet husk): bacterial and fungal community dynamics at industrial pilot and farm level. Bioresource Technology, 34, 10-16.
  • Awasthi, M.K., Wang, Q., Chen, H., Wang, M., Rena, X., Zhao, J., Li, J., Guo, D., Li, D.S., Awasthi, S.K., Sun, X., Zhang, Z. (2017). Evaluation of biochar amended biosolids cocomposting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost, Bioresource Technology, 237, 156-166.
  • Bosco, T., C., D., Michels, R., N., Bertozzi, J., Junior, I., T., Hashimoto, E., M. (2018). The ideal frequency of temperature data collection in compostability experiments on domestic organic residues. Environmental Technology, 41(9), 1160-1166.
  • Flynn, P.R., Wood, C.W. (1996). Temperature and chemical changes during composting of broiler litter. Compost Science and Utilization, 4(3), 62-70.
  • Ghaly, A. E., and M. Alhattah. (2013). Drying poultry manure for pollution potential reduction and production of organic fertilizer. America Journal of Environmental Science, 9(2), 88–102.
  • Hassen, A., Belguith, K., Jedidi, N., Cherif, A., Cherif, M., & Boudabous, A. (2001). Microbial characterization during composting of municipal solid waste. Bioresource Technology, 80(3), 217-225.
  • He, P., Wei, S., Shao, L., & Lü, F. (2018). Emission potential of volatile sulfur compounds (VSCs) and ammonia from sludge compost with different bio-stability under various oxygen levels. Waste Management, 73, 113-122.
  • Henry, C. L., and R. B. Harrison. (1996). Carbon Fraction in Compost and Compost Maturity Tests. In Soil organic matter: analysis and interpretation, ed. by F. R. Magdoff, M. A. Taabatabai and E. A. Harlon, 51–67. USA: SSA Special Publication.
  • Islam, M. K., Yaseen, T., Traversa, A., Kheder, M. B., Brunetti, G., & Cocozza, C. (2016). Effects of the main extraction parameters on chemical and microbial characteristics of compost tea. Waste Management, 52, 62-68.
  • Kadir, A. A., N. W. Azhari, and Jamaludin, S. N. (2017). Evaluation of physical, chemical and heavy metal concentration of food waste composting. Web of Conference 103:5-14.
  • Kanat, G. & Ergüven, G. Ö. (2020). Importance of Solid Waste Management on Composting, Problems and Proposed Solutions: The Case of Turkey. Avrupa Bilim ve Teknoloji Dergisi, (19), 66-71.
  • Larney, F. J., Sullivan, D. M., Buckley, K. E., & Eghball, B. (2006). The role of composting in recycling manure nutrients. Canadian Journal of Soil Science, 86(4), 597-611.
  • Lazcano, C., Gómez-Brandón, M., & Domínguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7), 1013-1019.
  • Liu, D., Zhang, R., Wu, H., Xu, D., Tang, Z., Yu, G., Xu, Z., Shen, Q. (2011). Changes in biochemical and microbiological parameters during the period of rapid composting of dairy manure with rice chaff. Bioresource Technology, 102, 9040- 9049.
  • Liu, K., Price, G.W. (2011). Evaluation of three composting systems for the management of spent coffee grounds. Bioresource Technology, 102, 7966-7974.
  • Luiza, R., M. Javares, and E. Nahas. (2014). Humic fractions of forest, pasture and maize crop soils resulting from microbial activity. Brazilian Journal of Microbiology 45(3), 963-69.
  • Muntjeer, A., Kazmi, AA., Ahmed, N. (2014). Study on effects of temperature, moisture and pH in degradation and degradation kinetics of aldrin, endosulfan, lindane pesticides during full-scale continuous rotary drum composting. Chemosphere, 102, 68-75.
  • Ojo, A., O., Taiwo, L., B., Adediran, J., A., Oyedele, A., O., Fademi, I., O., Uthman, A., C., O. (2018). Physical, Chemical and Biological Properties of an Accelerated Cassava Based Compost Prepared Using Different Ratios of Cassava Peels and Poultry Manure. Communications in Soil Science and Plant Analysis, 49(14), 1774-1786.
  • Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S., De Clercq, D., Coosemans, J., Insam, H., Swings, J. (2003). A survey of bacteria and fungi occurring during composting and selfheating processes. Annals of microbiology, 53(4), 349-410.
  • Sadef, Y., Poulsen, T. G., & Bester, K. (2014). Impact of compost process temperature on organic micro-pollutant degradation. Science of the Total Environment, 494, 306-312.
  • Sadik, M. W., El Shaer, H. M., & Yakot, H. M. (2010). Recycling of agriculture and animal farm wastes into compost using compost activator in Saudi Arabia. Journal of International Environmental Application and Science, 5(3), 397-403.
  • Saravanan, P., Kumar, S. S., & Ajithan, C. (2013). Eco-friendly practice of utilization of food wastes. International Journal of Pharmaceutical Sciences Innovation, 2(1), 14-17.
  • Soyöz, C., (2018). Egzoz gazı geri dönüşümünün döner tambur kompostlama sistemine etkisi. Yüksek lisans tezi, Süleyman Demirel Üniversitesi, Isparta.
  • Şevik F., Tosun, İ., Ekinci, K. (2018a). Nar İşleme Atıklarının Özellikleri ve Bertaraf. Stratejilerinin Belirlenmesi. Uluslararası Marmara Fen Ve Sosyal Bilimler Kongresi, 23- 25 Kasım 2018, Kocaeli.
  • Şevik, F., Tosun, İ., Ekinci, K. (2018b). The effect of FAS and C/N ratios on co-composting of sewage sludge, dairy manure and tomato stalks. Waste Management, 80, 450-456.
  • TMECC (2002). Test Methods for the Examination of Composting and Composts. Wayne Thompson, the US Composting Council, US Government Printing Office.
  • Truong, T.H.H., Marschner, P. (2018). Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. Geoderma, 319, 167-174.
  • Villar, I., Alves, D., Garrido, J. (2016). Evolution of microbial dynamics during the maturation phase of the composting of different types of waste. Waste Management, 54, 83-92.
  • Wang, Q., Wang, Z., Awasthi, M.K., Jiang, Y.H., Li, R.H., Ren, X.N., Zhao, J.C., Shen, F., Wang, M. J., Zhang, Z.Q. (2016). Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting. Bioresource Technology, 220, 297- 304.
  • Zhang, C.S., Xu, Y., Zhao, M.H., Rong, H.W., Zhang, K.F. (2018). Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting. Journal of Hazardous Materials, 344, 163-168.
  • Zhang, J., Bao, Y., Jiang, Y., Liu H. T., Xi, B. D., Wang, D. Q. (2019). Removal and dissipation pathway of typical fluoroquinolones in sewage sludge during aerobic composting. Waste Management, 95, 450-457.