Nanofiber Yapılı Aşırı Yükseltgenmiş Polipirol Modifiye Kalem Ucu Elektrotların Elektrokimyasal Epinefrin Tayininde Kullanımı

Bu çalışmada, kalem ucu elektrot yüzeyinde elektrokimyasal sentezlenerek aşırı yükseltgenen polipirol nanofiber elektrotlar hazırlanmışve (KUE/AYPP-NF) epinefrin tayinlerinde elektrokimyasal sensör olarak kullanımı araştırılmıştır. Modifiye elektrodun epinefrin(adrenalin) tayinlerine yönelik elektrokimyasal incelenmesinde ve analitik performanslarının belirlenmesinde dönüşümlü voltametri vediferansiyel puls voltametri (DPV) tekniği kullanılmıştır. Epinefrin tayinlerine pH’nın etkisi fosfat tamponu çözeltisinde KUE/AYPPNF kullanılarak incelenmiş ve en yüksek pik akımına pH 4,0 değerinde ulaşıldığı tespit edilmiştir. Nanofiber yapıda olmayan aşırıyükseltgeniş polipirol ile karşılaştırıldığında nanofiber yapının epinefrin yükseltgenmesini arttırdığı belirlenmiştir. DPV tekniğikullanılarak KUE/AYPP-NF için epinefrin yükseltgenmesine ait pik akımı 10-200 µM arasında 0,998 korelasyon katsayısı iledoğrusallık göstermektedir. Tayin sınırı (LOD) 2,2 µM olarak hesaplanmıştır (S/N=3). Sonuçlar KUE/AYPP-NF elektrotların epinefrintayinlerinde elektrokimyasal sensör olarak kullanılabileceğini göstermiştir.

Electrochemical Epinephrine Determination by Nanofiber Structured Overoxidized Polypyrrole Modified Pencil Graphite Electrodes

In this study, the overoxidized polypyrrole nanofiber on pencil graphite electrode (PGE/OPP-NF) surface were prepared and investigated to be used as an electrochemical sensor for determination of epinephrine (adrenaline,). Cyclic voltammetry and differential pulse voltammetry techniques were used for electrochemical investigation and determination of analytic performance for epinephrine detection, respectively. The effect of pH on epinephrine determination was investigated by using PGE/OPP-NF in phosphate buffer solution and the highest peak current was reached at pH 4.0. It was determined that the nanofiber structure increased the epinephrine oxidation compared to the non-nanofibre structured overoxidized polypyrrole. The peak current of epinephrine oxidation by PGE/OPPNF determined by using DPV technique is linear with a correlation coefficient of 0.998 in the range of 10-200 μM.The detection limit (LOD) of epinephrine is 2.2 μM. The results showed that PGE/OPP-NF electrodes could be used as electrochemical sensors for epinephrine determination.

___

  • Adhikari, B. & Majumdar, S. (2004). Polymer in sensor applications. Progress in Polymer Science, 29, 699-766.
  • Ahuja, T., Mir, I.A., Kumar, D. & Rajesh (2007). Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials, 28, 791-805.
  • Ayazi, Z., Izadyar, S. & Habibi, B. (2018). Ionic liquid/single-walled carbon nanotubes composite film modified carbon-ceramic electrode as an electrochemical sensor for the simultaneous determination of epinephrine and uric acid. Journal of the Chinese Chemical Society, 65(12), 1510-1520.
  • Babu, K.J., Sheet, S., Lee, Y.S. & Kumar, G.G. (2018). Three-Dimensional Dendrite Cu-Co/Reduced Graphene Oxide Architectures on a Disposable Pencil Graphite Electrode as an Electrochemical Sensor for Nonenzymatic Glucose Detection. ACS Sustainable Chemıstry & Engineering, 6(2), 1909-1918.
  • Bergmann, E.D. & Goldschmidt, Z. (1968). Some epinephrine analogs. Journal of Medicinal Chemistry 11, 1121-1125.
  • Canevari, T.C., Thiago, C., Nakamura, M., Cincotto, F.H., de Melo, F.M. & Toma, H.E. (2016). High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochimica Acta, 209, 464-470.
  • Devkota, L., Nguyen, L.T., Vu, T.T., & Piro, B. (2018). Electrochemical determination of tetracycline using AuNP-coated molecularly imprinted overoxidized polypyrrole sensing interface. Electrochimica Acta, 270, 535-542.
  • Dong, W.H., Ren, Y.P., Bai, Z.X., Jiao, J., Chen, Y., Han, B.K. & Chen, Q. (2018). Synthesis of tetrahexahedral Au-Pd core-shell nanocrystals and reduction of graphene oxide for the electrochemical detection of epinephrine. Journal of Colloid and Interface Science, 512, 812-818.
  • Ersöz, A., Gavalas, V.G. & Bachas, L.G. (2002). Potentiometric behavior of electrodes based on overoxidized polypyrrole films. Analytical and Bioanalytical Chemistry, 372, 7-8.
  • Fernandez, I., Trueba, M., Nunez, C.A. & Rieumont, J. (2005). Some features of the overoxidation of polypyrrole synthesized on austenitic stainless steel electrodes in aqueous nitrate solutions. Surface and Coatings Technology, 191, 134-139.
  • Gao, W., Song, J. & Wu, N. (2005). Voltammetric behavior and square-wave voltammetric determination of trepibutone at a pencil graphite electrode. Journal of Electroanalytical Chemistry, 576, 1-7.
  • Gu, J.W. Dai, H.X., Kong, Y., Tao, Y.X., Chu, H.X. & Tong, Z.F. (2016). Chiral electrochemical recognition of cysteine enantiomers with molecularly imprinted overoxidized polypyrrole-Au nanoparticles. Synthetic Metals, 222, 137-143. Part: A Special Issue.
  • Guerrieri, A., De Benedetto, G.E., Palmisano, F. & Zambonin, P.G. (1998). Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes a glucose biosensor based on a co-crosslinked glucose oxidize/overoxidized polypyrrole bilayer. Biosensors and Bioelectronics, 13, 103-112.
  • Hsu, C.W. & Yang, M.C. (2008). Electrochemical epinephrine sensor using artificial receptor synthesized by sol–gel process. Sensors and. Actuators B, 134, 680-686.
  • Kalimuthu, P. & Abraham, S. (2009). Simultaneous determination of epinephrine, uric acid and xanthine in the presence of ascorbic acid using an ultrathin polymer film of 5-amino-1,3,4-thiadiazole-2-thiol modified electrode. Analytica Chimica Acta, 647, 97-103.
  • Komaba, S., Seyama, M., Momma, T. & Osaka, T. (1997). Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole. Electrochimica Acta, 42, 383-388.
  • Koyun, O., Gursu, H. Gorduk, S. & Sahin, Y. (2017). Highly Sensitive Electrochemical Determination of Dopamine with an Overoxidized Polypyrrole Nanofiber Pencil Graphite Electrode. International Journal of Electrochemical Science, 12(7), 6428- 6444.
  • Lawson, A.G. & Gorman, R.I. (2008). Research Progress on Epinephrine, Nova Science Pub. Inc.
  • Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S.G., Neri, G. & Sekar, C. (2015). Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode. Sensors and Actuators B-Chemical, 221, 1412-1422.
  • Li, J. & Lin, X.-Q. (2007). Electrodeposition of gold nanocluster on overoxidized polypyrrole film modified glassy carbon electrode and its application fort he simultaneous determination of epinephrine and uric acidunder coexistence of ascorbic acid. Analytica Chimica Acta, 596, 222-230.
  • Majidi, M.R., Jouyban A. & Asadpour-Zeynali K. (2006). Voltammetric behaviour and determination of ionized in pharmaceuticals by using overoxidized polypyrrole glassy carbon modified electrode. Journal of Electroanalytical Chemistry, 589, 32-37.
  • Manjunathaa, J.G., Deramana, M., Basria, N.H. & Taliba, I.A. (2018). Fabrication of poly (Solid Red A) modified carbonnano tube paste electrode and its application forsimultaneous determination of epinephrine, uricacid and ascorbic acid. Arabian Journal of Chemistry, 11, 149-158.
  • Mazloum-Ardakani, M., Rajabzadeh, N., Dehghani–Firouzabadi, A., Sheikh-Mohseni, M.A., Benvidi, A., Naeimi, H., Akbari, M. & Karshenas, A. (2012). Carbon nanoparticles and a new derivative of hydroquinone for modification of carbon paste electrode for simultaneous determination of epinephrine and acetaminophen. Analytical Methods, 4, 2127–2133.
  • Mostany, J. & Scharifker, B.R. (1996). Impedance spectroscopy of undoped, doped and overoxidized poypyrrole films. Synthetic Metals, 87, 179-185.
  • Özcan, L., Şahin, Y. ve Türk, H. (2008). Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate. Biosensors and Bioelectronics, 24, 512-517.
  • Özcan, A., İlkbas, S. & Özcan, A.A. (2017). Development of a disposable and low-cost electrochemical sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode. Talanta, 165, 489- 495.
  • Özkorucuklu, S. P., Özcan, L., Yucel Sahin, Y. & Alsancak, G. (2011). Electroanalytical determination of some sulfonamides on overoxidized polypyrrole electrodes. Australian Journal of Chemistry, 64, 965–972.
  • Ramanavičius, A., Ramanavičiene, A. & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta, 51, 6025-6037.
  • Rezaei, B., Boroujeni, M.K.L. & Ensafi, A.A. (2014). Caffeine electrochemical sensor using imprinted film as recognition element based on polypyrrole, sol-gel, and gold nanoparticles hybrid nanocomposite modified pencil graphite electrode. Biosensors and Bioelectronics, 60, 77-83.
  • Retama, J.R., Mecerreyes, D., Lopez-Ruiz, B. & Cabarcos, E.L. (2005). Synthesis and characterization of semiconducting polypyrrolepolyacrylamide microparticles with GOx for biosensor applications. Colloids and Surfaces A, 270–271, 239-244.
  • Silva, L.I.B., Ferreira, F.D.P., Freitas, A.C., Rocha-Santos, T.A.P. & Duarteb, A.C. (2009). Optical fiber biosensor coupled to chromatographic separation for screening of dopamine, norepinephrine and epinephrine in human urine and plasma. Talanta, 80, 853-857.
  • Şahin, Y., Ercan, B. & Şahin, M. (2008). In situ electrochemical solid-phase extraction of anions and cations using polypyrrole and overoxidized sulfonated polypyrrole. Talanta, 75, 369-375.
  • Selbst, S.M. & Cronan K., (2000). Pediatric Emergency Medicine Secrets, Elsevier Health Sciences.
  • Soofiabadi, F., Amiri, A. & Jahani, S. (2017). Application of Cu(II) nanocomplex modified graphite screen printed electrode to improve the sensitivity and selectivity for epinephrine detection. Analytical and Bioanalytical Electrochemistry, 9(3), 340-350.
  • Tavakkoli, N., Soltani, N., Shahdost-fard, F., Ramezani, M., Salavati, H. & Jalali, M.R. (2018). Simultaneous voltammetric sensing of acetaminophen, epinephrine and melatonin using a carbon paste electrode modified with zinc ferrite nanoparticles, Microchimica Acta, 185, 479(11 sayfa).
  • Tian, Y., Wang, J., Wang, Z. & Wang, S. (2004). Electroreduction of nitrite at an electrode modified with polypyrrole nanowires. Synthetic Metals, 143, 309-313.
  • Valentini, F., Palleschi, G., Lopez Morales, E., Orlanducci, S., Tamburri, E. & Terranova, M.L. (2007). Functionalized single-walled carbon nanotubes modified microsensors for the selective response of epinephrine in the presence of ascorbic acid. Electroanalysis 19, 859–869.
  • Vestergaard, M., Kerman, K. & Tamiya, E. (2005).An electrochemical approach for detecting copper-chelating properties of flavonoids using disposable pencil graphite electrodes: Possible implications in copper-mediated illnesses. Analytica Chimica Acta, 538, 273– 281.
  • Wang, J., Kawde A.-N. & Sahlin, E. (2000). Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst, 125, 5–7.
  • Wang, L.X., Li, X.G. & Yang, Y.L. (2001). Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47, 125-139.
  • Wu, S.X., Zeng, J.M., Xie, H. & Ng, S.H. (2016). Capsaicin determination and chili sauce discrimination using low-cost and portable electrochemical sensors based on all graphite pencil electrodes. Analytical Methods, 8(39), 7025-7029.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç