Mikrofiltrasyon için elektrolif çekim yöntemi ile üretilmiş PVDF nanolifli membranlar: Gözenek boyutu ve kalınlığının membran performansına etkisi

Atık su arıtma, su saflaştırma ve konsantrasyon artırma işlemlerinde mikrofiltrasyon membranlarına ihtiyaç duyulmaktadır. Mikroorganizmaları ve askıda bulunan parçacıkları işlem sıvısından ayırmak için, kontamine sıvı, özellikle su, gözenekli bir membrandan geçirilir. Bu amaçla, elektrolif çekim yöntemi ile üretilmiş nanolifli membranların nano boyuttaki lifleri, küçük gözenek boyutları, düşük ağırlık ve yüksek geçirgenlik ile kullanılabilirler. Bu çalışmanın esas amacı ortalama lif çapı, PVDF nanolifli membranların kalınlıkları ve gözenek boyutlarının sıvı filtrasyon verimleri arasındaki ilişkiyi göstermektir. PVDF atık su arıtma proseslerinde yaygın olarak kullanılan bir polimerdir. Fiziksel ve kimyasal özellikleri ile dikkat çeken reaktif olmayan termoplastik floropolimerdir.. Bu çalışmada, üç farklı lif çapı elde etmek için %12, 14 ve 6 (w/v) PVDF çözelti konsantrasyonu ile nanolifler elektrolif çekim yöntemi ile üretilmiştir Çeşitli kalınlıkların elde edilmesi amacı ile 15 dakika, 30 dakika, 60 dakika, 3 saat ve 5 saat üretim süreleri kullanılmıştır. Gözeneklilik ölçüm sonuçlarına göre,14PVDF ve 16PVDF nanolifli membranlarının ortalama gözenek boyutları arasındaki büyük bir fark yoktur. Ancak, ince nanolif çapı (278.58 nm) ve fazla miktardaki nanolif nedeni ile, 12PVDF-5h nanolifli membranların en büyük gözenek boyutu (FBP) diğerlerine göre daha düşük olmuştur. Ayrıca 12PVDF-5h ve 12PVDF-3h arasında anlamlı bir farklılık gözlenmiştir ve bu iki membrana ait FBP diğer üç PVDF nanolifli membrandan daha küçük olmuştur. Üretilen PVDF nanoliflerin sıvı filtrasyon özellikleri, hazırlanan kaolin çözeltisinin bulanıklığının giderilmesi ile değerlendirilmiştir. Gözenek boyutları da göz önünde bulundurulduğunda, en iyi bulanıklık giderilme %’sinin 12PVDF-5h'e, en kötü bulanıklık giderilmesinin ise 16PVDF-15min nanolifli membranlara ait olduğu görülmüştür. Bununla birlikte, üretilen PVDF nanolifli membranların tümü, nispeten daha düşük bir maliyetle atık sudan kirleticilerin giderilmesi amacı ile etkili bir şekilde kullanılabilecek filtrasyon performansına sahiptir.

PVDF Electrospun Nanofiber Membranes for Microfiltration: The Effect of Pore Size and Thickness on Membrane Performance

Microfiltration membranes are needed in wastewater treatment, water purification and concentration processes. To separatemicroorganisms and suspended particles from process liquid, a contaminated fluid, especially water, is passed through a porousmembrane. Electrospun nanofiber membranes could be used for this aim with their nanoscale fibers, small pore size, low weight andhigh permeability. The main purpose of this study is to show the relationship between the average fiber diameter and thickness of thePVDF nanofiber membrane and the pore size and liquid filtration efficiency. PVDF is a widely used polymer in water treatmentprocesses. It is highly non-reactive thermoplastic fluoropolymer with outstanding physical and chemical properties. In this study, PVDFnanofibers were produced from 12, 14 and 16% (w/v) polymer solutions by electrospinning method to achieve three different meandiameters. 15 min, 30 min, 60 min, 3h and 5h of production periods were used for producing various thicknesses. According to poresize measurements, the differences in mean flow pore size (MFP) of 16PVDF and 14PVDF nanofiber membranes were not distinct.However, due to thin nanofiber diameter (278.58 nm) and high amount of nanofibers, biggest pore size (FBP) of 12PVDF-5h was thesmallest. There was also significant difference between 12PVDF-5h and 12PVDF-3h, and FBP of these two membranes were smallerthan other three 12PVDF nanofiber membranes. Liquid filtration property of produced electrospun PVDF nanofibers were evaluated byturbidity rejection of a kaolin solution. In correlation with the pore size results it was seen that best turbidity rejection percent wasbelonging to 12PVDF-5h and worst was belonging to 16PVDF-15min nanofiber membranes. Nevertheless, all of the producedelectrospun PVDF nanofiber membranes can be effectively used to remove contaminants from wastewater at a relatively low cost.

___

  • Arkema Innovative Chemistry. (2019). Kynar PVDF Membranes. Retrieved from https://espanol.kynar.com/export/shared/.content/media/downloads/investor-day/2012/innovation-day-kynar-pvdfmembranes.pdf
  • ASTM International. (2014). ASTM F316-03 - Standard Test Methods for Pore Size Characteristics of Membrane Filters by Bubble Point and Mean Flow Pore Test. Astm, 03(Reapproved 2011), 1–7. https://doi.org/10.1520/F0316-03R11.2
  • Bae, J., Baek, I., & Choi, H. (2016). Mechanically enhanced PES electrospun nanofiber membranes (ENMs) for microfiltration: The effects of ENM properties on membrane performance. Water Research, 105, 406–412. https://doi.org/10.1016/j.watres.2016.09.020
  • Bae, J., Baek, I., & Choi, H. (2017a). Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chemical Engineering Journal, 307, 670–678. https://doi.org/10.1016/j.cej.2016.08.125
  • Bae, J., Baek, I., & Choi, H. (2017b). Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chemical Engineering Journal, 307, 670–678. https://doi.org/10.1016/j.cej.2016.08.125
  • Baker, R. W. (2004). Membrane Technology and Applications. (C. Baker, Richard W. (Membrane Technology and Research, Inc. Menlo Park, Ed.). John Wiley & Sons Ltd,. https://doi.org/10.1002/0470020393
  • Cheng, S., Xiao, Y.-X., Zhao, L.-Y., Zhu, L.-T., Li, R.-L., & Zhu, G.-C. (2017). Fabrication and Characterization of Electrospun Nanofibrous Composite Membrane for Air Filtration. Journal of Fiber Bioengineering and Informatics, 10(4), 223–230. https://doi.org/10.3993/jfbim00272
  • Choi, S. S., Lee, Y. S., Joo, C. W., Lee, S. G., Park, J. K., & Han, K. S. (2004). Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochimica Acta, 50(2-3 SPEC. ISS.), 339–343. https://doi.org/10.1016/j.electacta.2004.03.057
  • Cui, Z., Drioli, E., & Moo, Y. (2014). Progress in Polymer Science Recent progress in fluoropolymers for membranes. Progress in Polymer Science, 39(1), 164–198. https://doi.org/10.1016/j.progpolymsci.2013.07.008
  • Eichhorn, S. J., & Sampson, W. W. (2005). Statistical geometry of pores and statistics of porous nanofibrous assemblies. Journal of the Royal Society Interface, 2(4), 309–318. https://doi.org/10.1098/rsif.2005.0039
  • EMD Millipore Corporation. (2015). Amicon ® Stirred Cells.
  • Garain, S., Jana, S., Sinha, T. K., & Mandal, D. (2016). Design of In Situ Poled Ce 3+ -Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator. ACS Applied Materials & Interfaces, 8(7), 4532–4540. https://doi.org/10.1021/acsami.5b11356
  • Huang, L., Arena, J. T., & McCutcheon, J. R. (2016). Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis. Journal of Membrane Science, 499, 352–360. https://doi.org/10.1016/J.MEMSCI.2015.10.030
  • Hutten, I. M., & Wadsworth, L. (2007). Handbook of nonwoven filter media. Handbook of Nonwoven Filter Media. https://doi.org/10.1016/B978-1-85617-441-1.X5015-X
  • Isoyama, R., Taie, M., Kageyama, T., Miura, M., Maeda, A., Mori, A., & Lee, S. S. (2017). A feasibility study on the simultaneous sensing of turbidity and chlorophyll a concentration using a simple optical measurement method. Micromachines, 8(4). https://doi.org/10.3390/mi8040112
  • Jang, W., Yun, J., Jeon, K., & Byun, H. (2015). PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications. RSC Advances, 5(58), 46711–46717. https://doi.org/10.1039/c5ra04439a
  • Kynar, K., & Pvdf, F. (2014). Performance Characteristics & Data.Retrived from https://espanol.kynar.com/export/sites/kynarlatam/.content/medias/downloads/literature/kynar-kynar-flex-pvdf-performance.pdf
  • Lenntech Water treatment & purification. (2019). Turbidity. Retrieved May 21, 2019, from https://www.lenntech.com/turbidity.htm
  • Letizia, M., & Chiara, F. (2018). Filtering Media by Electrospinning. https://doi.org/10.1007/978-3-319-78163-1
  • Li, H.-Y., & Liu, Y.-L. (2014). Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells. J. Mater. Chem. A, 2(11), 3783–3793. https://doi.org/10.1039/C3TA14264G
  • Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M., & Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375(1–2), 1–27. https://doi.org/10.1016/j.memsci.2011.03.014
  • Liu, Y., Wang, R., Ma, H., Hsiao, B. S., & Chu, B. (2013). High-flux microfiltration filters based on electrospun polyvinylalcohol nanofibrous membranes. Polymer, 54(2), 548–556. https://doi.org/10.1016/j.polymer.2012.11.064
  • Mandal, D., Yoon, S., & Kim, K. J. (2011). Origin of Piezoelectricity in an Electrospun Poly(vinylidene fluoride-trifluoroethylene) Nanofiber Web-Based Nanogenerator and Nano-Pressure Sensor. Macromolecular Rapid Communications, 32(11), 831–837. https://doi.org/10.1002/marc.201100040
  • Renuga Gopal, Satinderpal Kaur, Zuwei Ma, Casey Chan, Seeram Ramakrishna, T. M. (2006). Electrospun nanofibrous filtration membrane. Journal of Membrane Science, 281, 581–586. https://doi.org/10.1016/j.memsci.2006.04.026
  • Ryu, Y. J., Kim, H. Y., Lee, K. H., Park, H. C., & Lee, D. R. (2003). Transport properties of electrospun nylon 6 nonwoven mats. European Polymer Journal, 39(9), 1883–1889. https://doi.org/10.1016/S0014-3057(03)00096-X
  • Yeow, M. L., Liu, Y. T., & Li, K. (2004). Morphological study of poly(vinylidene fluoride) asymmetric membranes: Effects of the solvent, additive, and dope temperature. Journal of Applied Polymer Science, 92(3), 1782–1789. https://doi.org/10.1002/app.20141