Krank Biyel Mekanizmasının Pozisyon Kontrolü

Bu makale, simülasyon ortamında krank biyel mekanizmasının konum kontrolünü sunmaktadır. Krank biyel mekanizması ilk olarak Solidworks ortamında 3B modellenmiştir. Bu model daha sonra xml formatına dönüştürülmüştür. Krank biyel mekanizmasının simulink blokları, Matlab modelinden xml dosyası kullanılarak yapıldı ve bu, 3B modelin Matlab'a aktarılmasına izin verdi. Bu Simulink blokları, modelin giriş uzvunun açı kontrolü için PID kontrol yaklaşımını uygulamak için kullanıldı. Bu amaca ulaşmak için mevcut diğer bloklara simulinkten gerekli ek bloklar eklenmiştir. Mekanizmanın hedef referans noktasının 0.01367 saniyede 90 dereceye ulaştığı elde edilmiştir. Hata değerinin ise 0.03114 olduğu tespit edildi. Mekanizmanın PID kontrol yönteminin çok küçük bir hata payı ile hızlı pozisyon kontrolüne izin verdiği sonuçlardan açıkça görülmektedir. Solidworks, bu yöntemle oluşturulacak krank biyel mekanizmasının son tasarımını oluşturmak için kullanılabilecek bir programdır. Mekanizmayı yapmak için kullanılacak malzemeye karar vererek, aynı işlemler tekrarlandığında pratik uygulamalar için yeterli kontrol katsayılarına ulaşmak daha kolaydır. Bu işlem ek çalışma için zaman kazandıracaktır.

Position Control of Slider-Crank Mechanism

This paper presents the position control of the slider-crank mechanism in the simulation environment. The slider-crank mechanism was first 3D modeled in the Solidworks environment. This model was afterwards converted to xml format. The slider-crank mechanism's simulink blocks were made using the xml file from the Matlab model, which allowed the 3D model to be imported into Matlab. These Simulink blocks were used to implement the PID control approach for angle control of the model's input limb. In order to achieve this purpose, additional blocks required from the simulink have been added to other existing blocks. It has been determined that the mechanism's target reference point rotates 90 degrees in 0.01367 seconds. It was discovered that the error value was 0.03114. It is evident from the results that the mechanism's PID control method allows for quick position control with a very tiny margin of error. Solidworks is a program that may be used to create the final design of the slider-crank mechanism that will be created using this method. By deciding on the material that will be used to make the mechanism, it is simpler to achieve adequate control coefficients for practical applications when the same operations are repeated. This will free up time for additional study.

___

  • Ahmad, F., Hitam, A. L., Hudha, K., & Jamaluddin, H. (2011). Position tracking of slider crank mechanism using PID controller optimized by Ziegler Nichol’s method. Journal of Mechanical Engineering and Technology (JMET), 3(2), 27-41.
  • Lin, F. J., & Wai, R. J. (2001). Sliding-mode-controlled slider-crank mechanism with fuzzy neural network. IEEE Transactions on Industrial Electronics, 48(1), 60-70.
  • Lin, F. J., Fung, R. F., Lin, H. H., & Hong, C. M. (2001). A supervisory fuzzy neural network controller for slider-crank mechanism. Mechatronics, 11(2), 227-250.
  • Lee, C. D., Chuang, C. W., & Kao, C. C. (2004, December). Apply fuzzy PID rule to PDA based control of position control of slider crank mechanisms. In IEEE Conference on Cybernetics and Intelligent Systems, 2004. (Vol. 1, pp. 508-513). IEEE.
  • Faraji, H., & Farzadpour, F. (2013, April). Intelligent position control of slider-crank mechanism in the ship's propeller. In 2013 3rd Joint Conference of AI & Robotics and 5th RoboCup Iran Open International Symposium (pp. 1-7). IEEE.
  • Lin, F. J., Lin, Y. S., & Chiu, S. L. (1998). Slider-crank mechanism control using adaptive computed torque technique. IEE Proceedings-Control Theory and Applications, 145(3), 364-376.
  • Kudra, G., Balthazar, J. M., Tusset, A. M., Wasilewski, G., Stańczyk, B., & Awrejcewicz, J. (2022). Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism. Mechanical Systems and Signal Processing, 166, 108415.
  • Sarıgeçili, M. İ., Akçalı, İ. D. (2018). Dynamic Modeling of Slider-Crank Mechanism for Selecting Input Parameters for Desired Piston Speeds: Lumped Mass Approach. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(4), 67-82.
  • Atakök, G., & Balci, S. (2022). CNC Kumaş Kesim Makinesindeki Krank-Biyel Mekanizmasının Kinematik Analizi ve Kesici Bağlantı Uzunluklarının Performansa Etkisi. Mühendis ve Makina, 63(706), 41-54.
  • Chuang, C. W., Lee, C. D., & Huang, C. L. (2006, May). Applying experienced self-tuning PID control to position control of slider crank mechanisms. In International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006. (pp. 652-657). IEEE.
  • Flores-Campos, J. A., Perrusquía, A., Hernández-Gómez, L. H., González, N., & Armenta-Molina, A. (2021). Constant speed control of slider-crank mechanisms: A joint-task space hybrid control approach. IEEE Access, 9, 65676-65687.
  • Lau, S. C., Othman, W. A. F. W., & Bakar, E. A. (2013, November). Development of slider-crank based pole climbing robot. In 2013 IEEE International Conference on Control System, Computing and Engineering (pp. 471-476). IEEE.
  • Sang, Y., Karayaka, H. B., Yan, Y., & Zhang, J. Z. (2014, September). Resonance control strategy for a slider crank WEC power take-off system. In 2014 Oceans-St. John's (pp. 1-8). IEEE.
  • Saito, H., Ishikawa, J., Kamamichi, N., Shiotsuki, T., & Furuta, K. (2009, August). Self-tuning control for rotational speed of slider-crank mechanism. In 2009 ICCAS-SICE (pp. 29-33). IEEE.
  • Işık, E. (2002). Titreşimli zeytin hasat makinalarında kullanılan mekanizmanın kinematik analizi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 16(2), 93-100.
  • Halicioglu, R., & Dulger, L. C. (2013). Krank pres mekanizması: kinematik analizi ve benzetimi. 16. Ulusal Makina Teorisi Sempozyumu, Erzurum, 451-458.
  • Perrusquia, A., Flores-Campos, J. A., Torres-Sanmiguel, C. R., & Gonzalez, N. (2020). Task space position control of slider-crank mechanisms using simple tuning techniques without linearization methods. IEEE Access, 8, 58435-58442.