Atık Mısır Koçanı Takviyeli Polyester Kompozit Üretimi ve Karakterizasyonu

Bu çalışmada atık mısır koçanları öğütülerek polyester kompozitte kullanılmıştır. Laboratuvar koşullarında dolgu maddesi olarak doymamış polyester (UP) içerisine karıştırılarak homojen dağılım sağlanır. Daha sonra karışıma metil etil keton peroksit (MEKP) ve kobalt oktoat (Co Oc) katalizörleri eklenir. Belirli miktarlarda kullanılan katkı ve dolgu maddeleri kısa süre karıştırıldıktan sonra polyester kompozitler standart kalıplara dökülerek kürlenmesi için beklenir. Kürleme sonrası elde edilen kompozitin yoğunluğu, Shore D sertliği ve termal bozunma davranışı incelenmiştir. Karışımdaki mısır koçanı miktarı arttıkça polyester kompozitin yoğunluğu azalır. Ayrıca karışımdaki dolgu maddesinin oranının artması polyester kompozitin gözenekliliğini de artırmaktadır. Isıl iletkenlik ölçümlerinde, artan dolgu miktarına göre polyester kompozitin ısıl iletkenlik katsayısının az da olsa arttığı görülmektedir. Ayrıca mısır koçanı takviyesi, polyester kompozitin hem Shore D sertliğini hem de aktivasyon enerjisini azaltmaktadır. Elde edilen sonuçlara göre ağırlıkça % 3'ün üzerinde mısır koçanı takviyesi kullanımının kompozitin yüzey morfolojisini ve mekanik özelliklerini olumsuz yönde etkilediği görülmüştür. Ekonomik ve hafif bir polyester kompozit elde edilirken hem termal hem de mekanik özelliklerin zayıflamaması için dolgu miktarına dikkat edilmelidir.

Production and Characterization of Waste Corncob Reinforced Polyester Composite

In this study, waste corncobs are ground and used in the polyester composite. Homogeneous distribution is provided by mixing it into unsaturated polyester (UP) as a filler under laboratory conditions. Then, methyl ethyl ketone peroxide (MEKP) and cobalt octoate (Co Oc) catalysts are added to the mixture. After mixing the additives and fillers used in certain amounts for a short time, the polyester composites are poured into standard molds and waited for curing. The density, Shore D hardness, and thermal decomposition behavior of the composite obtained after curing have been investigated. As the amount of corncob in the mixture increases, the density of the polyester composite decreases. Besides, the rise in the ratio of this filler in the mixture also increases the porosity of the polyester composite. In the thermal conductivity measurements, it is seen that the thermal conductivity coefficient of the polyester composite increases, albeit slightly, according to the increasing amount of filler. Also, corncob reinforcement reduces both Shore D hardness and activation energy of the polyester composite. According to the results obtained, it was observed that the use of corncob reinforcement above 3 wt.% negatively affected the surface morphology and mechanical properties of the composite. While obtaining an economical and light polyester composite, attention should be paid to the amount of filler so that both thermal and mechanical properties are not weakened.

___

  • Yanen, C., and Aydoğmuş, E. Characterization of Thermo-Physical Properties of Nanoparticle Reinforced the Polyester Nanocomposite, Dicle University Journal of the Institute of Natural and Applied Science, 10(2), 121–132, 2021.
  • Das, S., Chaudhuri, A., & Singha, A. K. Fabrication, microstructural and mechanical properties of arecanut leaf sheath fibre reinforced polyester resin composites. The Journal of The Textile Institute, 113(9), 1942-1949, 2022.
  • Orhan, R., Aydoğmuş, E., Topuz, S., and Arslanoğlu, H. Investigation of thermo-mechanical characteristics of borax reinforced polyester composites, Journal of Building Engineering, 42, 103051, 2021.
  • Dağ, M., Yanen, C., and Aydoğmuş, E. Effect of Boron Factory Components on Thermophysical Properties of Epoxy Composite, European Journal of Science and Technology, 36, 151–154, 2022.
  • Yanen, C., Dağ, M., and Aydoğmuş, E. Investigation of Thermophysical Properties of Colemanite, Ulexite, and Tincal Reinforced Polyester Composites, European Journal of Science and Technology, 36, 155–159, 2022.
  • Aydoğmuş, E., and Arslanoğlu, H. Kinetics of thermal decomposition of the polyester nanocomposites, Petroleum Science and Technology, 39(13–14), 484–500, 2021.
  • Şahal, H., and Aydoğmuş, E. Investigation of Thermophysical Properties of Polyester Composites Produced with Synthesized MSG and Nano-Alumina, European Journal of Science and Technology, 34, 95-99, 2022.
  • Şahal, H., Aydoğmuş, E., and Arslanoğlu, H. Investigation of thermophysical properties of synthesized SA and nano-alumina reinforced polyester composites, Petroleum Science and Technology, 1–17, 2022.
  • Aydoğmuş, E., Arslanoğlu, H., and Dağ, M. Production of waste polyethylene terephthalate reinforced biocomposite with RSM design and evaluation of thermophysical properties by ANN, Journal of Building Engineering, 44, 103337, 2021.
  • Aydoğmuş, E., Dağ, M., Yalçın, Z. G., and Arslanoğlu, H. Synthesis and characterization of EPS reinforced modified castor oil-based epoxy biocomposite, Journal of Building Engineering, 47, 103897, 2022.
  • Aydoğmuş, E. Biohybrid nanocomposite production and characterization by RSM investigation of thermal decomposition kinetics with ANN, Biomass Conversion and Biorefinery, 12, 4799-4816, 2022.
  • Şahal, H., and Aydoğmuş, E. Production and Characterization of Palm Oil Based Epoxy Biocomposite by RSM Design, Hittite Journal of Science and Engineering, 8(4), 287-297, 2021.
  • Aydoğmuş, E., Dağ, M., Yalçın, Z. G., and Arslanoğlu, H. Synthesis and characterization of waste polyethylene reinforced modified castor oil‐based polyester biocomposite, Journal of Applied Polymer Science, 139, e525256, 2022.
  • Demirel, M. H., and Aydoğmuş, E. Production and Characterization of Waste Mask Reinforced Polyester Composite, Journal of Inonu University Health Services Vocational School. 10(1), 41-49, 2022.
  • Demirel, M. H., and Aydoğmuş, E. Waste Polyurethane Reinforced Polyester Composite, Production and Characterization, Journal of the Turkish Chemical Society Section A: Chemistry, 9(1), 443–452, 2022.