Elektro-membran Biyoreaktör Kombine Güneş Enerjili Prosesler: MATLAB Modelleme

Bu çalışmada, Türkiye'de Antalya için batık elektro membran biyoreaktör ile sızıntı suyu arıtımında kullanılan DC güç kaynağı yerine güneş enerjisi için (PV) panel kullanılabileceği araştırılmıştır. Çalışma, güneş enerjili veya PV panellerden elde edilen elektrik enerjisinin MATLAB Simulink ile analizi ve modellemesi yapılmış ve bir mühendislik yaklaşımı sunmaktadır. SMEBR, 24 mA/cm2 (11,5 A) akım yoğunluğunda, 3+3 dakika maruz kalma süresinde elektrokinetik koşullar altında çalıştırıldı. Sonuç olarak, SMEBR elektrokinetik deney sonuçları ışığında paralel bağlanmış bir çift PV panelin bu bölge için SMEBR işlemi için 11.5 A sağladığı bulunmuştur. Elde edilen modellemede hacim miktarına bağlı olarak panel sayısının arttığı tespit edilmiştir. Ayrıca PV sistemin aküsüz çalışabileceği bir kontrol mekanizması ile sistemi kapattığı ve doğru akım sağladığı anlaşılmıştır. Sisteme pil eklenirse çalışmaya ara vermeden devam edebilir. Ancak bu sistem yaklaşık altı dakika çalışacağı için herhangi bir pil maliyeti gerekmeyecektir.

Electro-membrane Bioreactor Combined Solar Powered Processes: MATLAB Modelling

In this study, it is researched that could use (PV) panel for solar energy instead of DC power supply used in leachate treatment by submerged electro membrane bioreactor for Antalya in Turkey. The study was made the analysis and modeling by MATLAB Simulink of electric energy obtained solar powered or PV panels and present an engineering approach. SMEBR was operated under electrokinetic conditions at a current density of 24 mA/cm2 (11,5 A), exposure time 3+3 minutes. As a result, in the light of SMEBR electrokinetic experimental results, it was found that a pair of PV panels connected in parallel provide 11.5 A for the SMEBR process for this region. In obtained modelling, it was determined the number of panels increases dependent on the amount of volume. Also, it was understood that PV system can work without battery via a control mechanism turn off the system, and it provides direct current. If a battery is added to the system, it can continue treatment without interruption. But since this system will run for about six minutes, no battery cost will be required.

___

  • D. Hoornweg, P. Bhada-Tata, C. Kennedy, “Environment: Waste production must peak this century. Nature News”, 2013, 502(7473), 615.
  • S. Renou, J. G. Givaudan, S. Poulain, F. Dirassouyan, P. Moulin, “Landfill leachate treatment: Review and opportunity”, Journal of hazardous materials, 2008, 150(3), 468-493.
  • K. Yapsakli, C.Aliyazicioglu, B. Mertoglu, “Identification and quantitative evaluation of nitrogen-converting organisms in a full-scale leachate treatment plant,”, J. Environ. Manage., 2011, vol. 92, no. 3, pp. 714–723.
  • F. N. Ahmed, C. Q. Lan, “Treatment of landfill leachate using membrane bioreactors: A review”, Desalination, 2012, vol. 287, pp. 41–54.
  • A. Z. Gotvajn, T. Tišler, J. Zagorc-Končan, “Comparison of different treatment strategies for industrial landfill leachate”, J. Hazard. Mater., 2009, vol. 162, no. 2–3, pp. 1446–1456.
  • H. Alvarez‐Vazquez, B. Jefferson, S. J. Judd, “Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review”, J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol., 2004, vol. 79, no. 10, pp. 1043–1049.
  • G. K. Akkaya, M. S. Bilgili, “Evaluating the Performance of an Electro-Membrane Bioreactor in Treatment of Young Leachate”, Journal of Environmental Chemical Engineering, 2020, 104017.
  • K. Bani-Melhem, M. Elektorowicz “Development of a novel submerged membrane electro-bioreactor (SMEBR): Performance for fouling reduction”, Environ. Sci. Technol., 2010, vol. 44, no. 9, pp. 3298–3304.
  • M. Kobya, H. Hiz, E. Senturk, C. Aydiner, E. Demirbas, “Treatment of potato chips manufacturing wastewater by electrocoagulation”, Desalination, 2006, vol. 190, no. 1–3, pp. 201–211.
  • C. J. Nawarkar, V. D. Salkar, “Solar powered electrocoagulation system for municipal wastewater treatment”, Fuel, 2019, 237, 222-226.
  • I. Salmerón, I. Oller, S. Malato, “Electro-oxidation process assisted by solar energy for the treatment of wastewater with high salinity”, Science of The Total Environment, 2020, 705, 135831.
  • G. Sharma, J. Choi,H. K. Shon, S. Phuntsho, “Solar-powered electrocoagulation system for water and wastewater treatment”, Desalination and water treatment, 2011, 32(1-3), 381-388.
  • A. García-García, V. Martínez-Miranda, I. G. Martínez-Cienfuegos, P. T. Almazán-Sánchez, M. Castañeda-Juárez M, I. Linares-Hernández, “Industrial wastewater treatment by electrocoagulation–electrooxidation processes powered by solar cells”, Fuel, 2015, 149, 46-54.
  • M. Millán, M. A. Rodrigo, C. M. Fernández-Marchante, P. Cañizares, J. Lobato, “Powering with solar energy the anodic oxidation of wastewater polluted with pesticides”, ACS Sustainable Chemistry & Engineering, 2019, 7(9), 8303-8309.
  • E. Pihl, “Statements on Solar Energy by the Energy Committee at the Royal”, 2008.
  • S. Renou, J. G. Givaudan, S. Poulain, F. Dirassouyan, and P. Moulin, “Landfill leachate treatment: Review and opportunity”, J. Hazard. Mater., 2008, vol. 150, no. 3, pp. 468–493.