Killi zeminlerde Çok Kanallı Yüzey Dalgası Analizi Yöntemi ile eldeedilen kayma dalga hızı ile plastisite indisi ve standart penetrasyonsayısı korelasyonu

Temel zemin mekaniği parametreleri ile karmaşık zemin modeli parametrelerinin elde edilmesi mümkündür. Kayma dalgası hızınadayalı zemin profilini belirlemek için farklı jeofizik arama teknikleri kullanılmaktadır. ÇKYDA tekniği zemin parametrelerini eldeetmek için kullanılan jeofizik çalışma yöntemlerinden bir tanesidir. Yerine özgün olarak sığ yüzey altı topografya araştırmalarındahızlıca uygulanabilen doğaya tahribatsız ve çok hızlı değerlendirme imkânı sunan bu yöntem geoteknik çalışmalar için büyük biröneme sahiptir. Çalışma kapsamında farklı noktalarda gerçekleştirilen ÇKYDA tekniği ile elde edilen kayma dalgası hızları (Vs), yineaynı noktalarda yapılan sondajlardan elde edilen SPT-N ve örselenmiş zemin numuneleri üzerinde yapılan deneylerle bulunanplastisite indisi (PI) değerleri ile karşılaştırılmıştır. Gerçekleştirilen değerlendirmeler neticesinde kayma dalgası hızları ile plastisiteindisi ve SPT-N değerleri arasında bir anlamlı bir ilişki gözlenmiştir. Bu karşılaştırma sonucunda elde edilen bağıntı Plastisite indisiiçin %93’lük ve SPT-N değerleri için %74’lük bir benzerlik gösterdiği görülmüştür. Elde edilen korelasyon eğrileri göstermiştir kiplastik indisi ile kayma dalgası hızları arasında ters orantı varken, SPT-N değerleri arasında doğru orantı mevcuttur. Zemin mekaniğiile ilişkili her parametre birbiri ile bağlantılı olması gerektiği bilinmekle birlikte, her farklı deneyin birbirlerine göre sağladığıfarklılıklar vardır. Sonuç olarak plastisite indisi ve SPT-N gibi doğal zemin üzerinde yapılan deneyler kullanılarak hem yapısal hem dezemin modellerinde kullanımı değerli kayma dalgası hızları arazi çalışmaları öncesinde öngörülebilir. Çalışma kapsamında killizeminlerin plastisite indisi ile kayma dalgası hızı arasında gerçekleştirilen regresyon analizleri sonucunda yüksek determinasyonkatsayısına sahip olduğu ve bahse konu parametereler arasında güçlü mekaniksel bağ olduğu gözlemlenmiştir.

Correlation for Multichannel Analysis of Surface Waves determined shear wave velocity as a function of plasticity index and standard penetration test resistance for clay soils

It is possible to obtain advance soil parameters via basic characteristic tests on soil specimens. Shear wave velocity is an importantsoil parameter required for advance soil models and can be determined during the field investigation of such weak and problematicsoils. Various geophysical techniques have been utilized in past to determine the shear wave velocity. Among those techniquesMultichannel analysis of surface waves (MASW) method is the most widely used one. Named shallow depth ground investigationtechnique has a great importance in geotechnical applications. In this study, shear wave velocity measurements via MASW technique performed in various sides of North Cyprus have beencorrelated to the Standard penetration blow number (SPT-N) and plasticity index (PI) value obtained via undisturbed samples at samelocations. Evaluation of results have revealed that there is a good correlation between simple, easy and cheap to obtain soil mechanicparameters such as plasticity index and SPT-N number to more advance and expensive to obtain parameters such as shear wavevelocity via MASW. Regression factor of shear wave velocity verses plasticity index found to be as successful as 93% and Shearwave velocity verses SPT-N as 74%. It is also evidential that plasticity index and shear wave velocity has invers correlation whereSPT-N verses shear wave velocity is directly correlated. It is essential to know that most of soil parameters are correlated to each other with various ways and it is important to highlight thosedifferences in correlations. Therefore, it is evidential that a parameter which can be used in advance soil modelling, shear wavevelocity, can be obtained via simple, fast, and cheap experiments such as characterisation and standard penetration tests. It isevidential from the results that regression analysis of shear wave velocity verses plasticity index has high regression factor where suchrelationship shows strong mechanical link between those parameters.

___

  • ASTM D2487-17e1. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: West Conshohocken, PA, USA, 2017.
  • ASTM D1586 / D1586M-18, Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils, ASTM International, West Conshohocken, PA, 2018, www.astm.org
  • ASTM D4318-17e1. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils; ASTM International: West Conshohocken, PA, USA, 2017.
  • Ataee, O., Moghaddas, N. H., & Lashkaripour, G. R. (2019) Estimating shear wave velocity of soil using standard penetration test (SPT) blow counts in Mashhad city. Journal of Earth System Science, 128(3). doi: 10.1007/s12040-019- 1077-x
  • Athanasopoulos, G.A. (1995). Empirical correlations Vs0- NSPT for soils ofGreece: a comparative study of reliability. In: Cakmak AS, BrebbiaCA, editors. Proceedings of seventh international conference on soildynamics and earthquake engineering, Chania, Crete, Greece. South-ampton: Computational Mechanics Publications, 1995, pp. 19-26.
  • Boadu, F.K. (2000). Predicting the transport properties of fractured rocks from seismic information: numerical experiments. Journal of Applied Geophysics, 44: 103–113.
  • Brandenberg, S. J., Bellana, N., & Shantz, T. (2010). Shear wave velocity as function of standard penetration test resistance and vertical effective stress at California bridge sites. Soil Dynamics and Earthquake Engineering, 30(10), 1026-1035.
  • Chatterjee, K., & Choudhury, D. (2013). Variations in shear wave velocity and soil site class in Kolkata city using regression and sensitivity analysis. Natural hazards, 69(3), 2057-2082.
  • Chik, Z., Ariestianty, S. K., Rosyidi, S. A. P., Nayan, K. A. M., & Taha, M. (2010). Field Measurement of Dynamic Soil Properties of Tropical Meta-Sediment Residual Soils.
  • Chrzan, T. (1997). The determination of rocks’ mechanical properties with the use of ultrasounds. In Mine Planning and Equipment Selection 1997: Proceedings of the 6th International Symposium, Ostrava, Czech Republic, 3–9
  • September 1997. Edited by V. Strakos, V. Kebo, R. Farana, and L. Smutny. A.A. Balkema, Rotterdam, The Netherlands. pp. 315–318.
  • Dikmen, Ü. (2009). Statistical correlations of shear wave velocity and penetration resistance for soils. Journal of Geophysics and Engineering, 6(1), 61-72.
  • Fener, M., Kahraman, S., Bay, Y., & Gunaydin, O. (2005). Correlations between P-wave velocity and Atterberg limits of cohesive soils. Canadian Geotechnical Journal, 42(2), 673–677. doi: 10.1139/t04-102.
  • Hafezi Moghaddas N, Azadi A and Amanian M 2010 Assessment of shear wave velocity based on standard penetration and accuracy of the results in the range of Mashhad City; In: Fourteenth Conference of Iran Geophysics, Geophysical Institute (in Persian).
  • Hakyemez,Y. H. (2014). Kuzey Kıbrıs’ın Temel Jeolojik Özellikleri. TPJD Bülteni, Cilt 26, Sayı 2, Sayfa 7-46, 2014.
  • Hakyemez, Y.; Turhan, N.; Sönmez, İ.; Sümengen, M. (2000). Kuzey Kıbrıs’ın Jeolojik Özellikleri; Maden Tetkik ve Arama Genel Müdürlüğü: Ankara, Türkiye; yayınlanmamış rapor.
  • Hasancebi, N., Ulusay, R. (2007) Empirical correlations between shear wave velocity and penetrationresistance for ground shaking assessments. Bull Eng Geol Environ 66(2):203– 213.
  • Imai, T. (1977). P- and S-wave velocities of the ground in Japan; Proc. 9th Int. Conf. Soil Mech. and Foundn. Engg., Tokyo, 257–260.
  • Imai, T. (1982). Correlation of N value with S-wave velocity and shear modulus.
  • Iyisan R (1996). Correlations between shear wave velocity and in situ penetration test results. Chamber of civil engineers of Turkey. Teknik Dergi 7(2):1187–1199.
  • Jafari M. K., Asghari A. and Rahmani I. (1997). Empirical correlation between shear wave velocity (Vs) and SPT-N value for south of Tehran soils Proc. 4th Int. Conf. on Civil Engineering (Tehran, Iran) (in Persian).
  • Jafari M.K., Shafiee A., Ramzkhah A. (2002). Dynamic properties of the fine grained soils in South of Tehran. J Seismol. Earthq Eng 4(1):25–35.
  • Kanai K (1966). Conference on cone penetrometer. The Ministry of Public Works and Settlement, Ankara, Turkey.
  • Kahraman, S. (2001). Evaluation of simple methods for assessing the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, 38: 981–994.
  • Kibris Türk Mühendis ve Mimar Odaları Birliği İnşaat Mühendisleri Odası (Zemin Katman Veritabanı). Online: https://www.ktimo.org/Zemin (ziyaret tarihi 12 Eylül 2020).
  • Kiku H, Yoshida N, Yasuda S, Irisawa T, Nakazawa H, Shimizu Y, Ansal A, Erkan A (2001). In situ penetration tests and soil profiling in Adapazari, Turkey. Proceedings of the ICSMGE/TC4 satellite conference on lessons learned from recent strong earthquakes, pp 259–265.
  • Kilic, R. (1995). Geomechanical properties of the ophiolites (Cankiri/Turkey) and alteration degree of diabase. Bulletin of the International Association of Engineering Geology, 51: 64–69.
  • Kurtulus, C., Sertcelik, F., Canbay, M. M., & Sertcelik, I. (2010). Estimation of Atterberg limits and bulk mass density of an expansive soil from P-wave velocity measurements. Bulletin of Engineering Geology and The Environment, 69(1), 153- 154.
  • Lee, S. H. H. (1990). Regression models of shear wave velocities in Taipei basin. Journal of the Chinese Institute of Engineers, 13(5), 519-532.
  • Lee, S. H. H. (1992). Analysis of the multicollinearity of regression equations of shear wave velocities. Soils and foundations, 32(1), 205-214.
  • Madun, A., Ahmad Supa’at, M. E., Ahmad Tajuddin, S. A., Zainalabidin, M. H., Sani, S., & Yusof, M. F. (2016). Soil investigation using multichannel analysis of surface wave (MASW) and borehole. ARPN Journal of Engineering and Applied Sciences, 11(6), 3759-3763.
  • Maheswari, R. U., Boominathan, A., & Dodagoudar, G. R. (2010). Seismic site classification and site period mapping of Chennai City using geophysical and geotechnical data. Journal of Applied Geophysics, 72(3), 152-168.
  • Martínez‐Pagán, P., Navarro, M., Pérez‐Cuevas, J., Alcalá, F. J., García‐Jerez, A., & Rancisco Vidal, F. (2018). Shear‐wave velocity structure from MASW and SPAC methods: The case of Adra town, SE Spain. Near Surface Geophysics, 16(3), 356-371.
  • Nazarian, S., & Stokoe, K. H. (1989). Nondestructive evaluation of pavements by surface wave method. In Nondestructive testing of pavements and backcalculation of moduli. ASTM International.
  • Nazarian, S. And Stokoe Ii, K. H. (1984). In-situ shear wave velocity from spectral analysis of surface waves. Proc. 8th World Conf On Earthquake Engineering, 3, pp 31-38.
  • Ohba, S., & Toriuma, I. (1970). Research on vibrational characteristics of soil deposits in Osaka, Part 2, on velocities of wave propagation and predominant periods of soil deposits. In technical meeting of Architectural Institute of Japan.
  • Ohsaki, Y., & Iwasaki, R. (1973). On dynamic shear moduli and Poisson’s ratios of soil deposits. Soils and Foundations, 13(4), 61-73.
  • Ohta, H. (1972). Analysis of deformations of soils based on the theory of plasticity and its application to settlement of embankments.
  • Ohta, Y., & Goto, N. (1978). Empirical shear wave velocity equations in terms of characteristic soil indexes. Earthquake engineering & structural dynamics, 6(2), 167-187.
  • Pamuk E., Doğru, F., and Dindar, H. (2015). Yüzey Dalgası Dispersiyon Verisinin Ardışık Ters Çözümü. Yerbilimleri Dergisi, 36(1), 1-18.
  • Pamuk, E., Özdağ, Ö. C., & Akgün, M. (2019). Soil characterization of Bornova Plain (Izmir, Turkey) and its surroundings using a combined survey of MASW and ReMi methods and Nakamura’s (HVSR) technique. Bulletin of Engineering Geology and the Environment, 78(4), 3023- 3035.
  • Pamuk, E., Özdağ, Ö. C., Tunçel, A., Özyalın, Ş., & Akgün, M. (2018). Local site effects evaluation for Aliağa/İzmir using HVSR (Nakamura technique) and MASW methods. Natural Hazards, 90(2), 887-899.”
  • Park, C.B., R.D. Miller and J. Xia (1998), “Imaging dispersion curves of surface waves on multi-channel record”: [Expanded Abstract]: Soc. Explor. Geophys., pp. 1377-1380.
  • Park, C.B., R.D. Miller and J. Xia (1999), “Multi-channel analysis of surface waves (MASW)”, Geophysics, Vol.64, 3, pp. 800-808.
  • Park, C.B., R.D. Miller and J. Xia (2001), “Offset and resolution of dispersion curve in multichannel analysis of surface waves (MSW)”, Proceedings of the SAGEEP 2001, Denver, Colorado, SSM-4.
  • Pitilakis, K. D., Anastasiadis, A., & Raptakis, D. (1992). Field and laboratory determination of dynamic properties of natural soil deposits. In Proceedings of the 10th world conference on earthquake engineering (Vol. 5, pp. 1275- 1280).
  • Rahman, M. Z., Kamal, A. M., & Siddiqua, S. (2018). Nearsurface shear wave velocity estimation and V s 30 mapping for Dhaka City, Bangladesh. Natural Hazards, 92(3), 1687- 1715.
  • Raptakis, D. (1995). Contribution to the determination of the geometry and the dynamic properties of soil formations and their seismic response (Doctoral dissertation, Ph. D. Thesis (in Greek), Dept. of Civil Eng., Aristotle Univ. of Thessaloniki).
  • Richards, P. G., & Aki, K. (1980). Quantitative Seismology: Theory and Methods (p. 13). Freeman.
  • Ryden, N., Park, C. B., Ulriksen, P., & Miller, R. D. (2004). Multimodal Approach to Seismic Pavement Testing. Journal of Geotechnical and Geoenvironmental Engineering, 130(6), 636–645. doi: 10.1061/(asce)1090-0241(2004)130:6(636)
  • Saikia, A., Baruah, D., Das, K., Rabha, H. J., Dutta, A., Saharia, A. (2017). Predicting Compaction Characteristics of FineGrained Soils in Terms of Atterberg Limits. Int. J. of Geosynth. and Ground Eng. 3, 18. https://doi.org/10.1007/s40891-017-0096-4
  • Seed, H. B., & Idriss, I. M. (1981). Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes. In ASCE national convention (MO) (pp. 481-544).
  • Seed, H. B., Idriss, I. M. and Arango, I. (1983). Evaluation of Liquefaction Potential Using Field Performance Data. Journal of Geotechnical Engineering, Vol. 109, No. GT3, pp 458-482
  • Shibata, T. (1970). The relationship between the N-value and Swave velocity in the soil layer. Disaster Prevention Research Laboratory, Kyoto University, Kyoto, Japan.
  • Tezcan, S., Keçeli, A., Özdemir, Z. (2006). Kayma Dalgası Hızı Yardımı ile Zemin Emniyet Gerilmesi Tayini. Şantiye (İnşaat, Makine ve Mimarlık Dergisi), 214, 102-105.
  • Tezcan, S., Özdemir, Z. (2006). Sismik Yöntem ile Zemin Emniyet Gerilmesi Tayininde Temel Boyutları. Şantiye (İnşaat, Makine ve Mimarlık Dergisi), 217,106-108
  • Xia, J., Miller, R.D., Park C.B. & Ivanov, J. (2000). “Construction of 2-D vertical shear-wave velocity field by the multichannel analysis of surface wave technique”,
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç
Sayıdaki Diğer Makaleler

Faster R-CNN Evrişimsel Sinir Ağı Üzerinde Geliştirilen ModelinDerin Öğrenme Yöntemleri ile Doğruluk Tahmini ve Analizi:Nesne Tespiti Uygulaması

Ali ÇETİNKAYA, Hakan AYDIN, Okan YILMAZ

Şanlıurfa Ekolojik Koşullarında Yetiştirilen Bazı Nohut (Cicerarietinum L.) Çeşitlerinin Verim ve Verim Unsurlarının Belirlenmesi

Numan BİLDİRİCİ, Ömer DEMİRCİ

Lazer Kaynağı İle Birleştirilen AISI 410S Ferritik Paslanmaz ÇeliğinMikroyapı ve Mekanik Özelliklerine Gerilme Giderme Isıl İşlemininEtkileri

Ceyhun KÖSE, Ceyhun TOPAL

The Impact of the Different Voltages and Frequencies on Resistivity ofthe $TiO_2$-based Memristors with 3D Observation in MATLAB

Niloufar RAJABIYOUN

Ayrıştırma Yöntemlerinin Derin Öğrenme Algoritması ile TanımlananRüzgâr Hızı Tahmin Modeli Başarımına Etkisinin İncelenmesi

Aytaç ALTAN, Seçkin KARASU

Patates (Solanum tuberosum L.) Yetiştirilen Toprakların VerimlilikDurumu ve Potansiyel Besin Maddesi Sorunlarının Belirlenmesi

Mehmet Arif ÖZYAZICI, Gülen ÖZYAZICI, Orhan DENGİZ

Yaşlılarda Düşme Riskinin Belirlenmesi İçin Yürüyüş EsnasındaKayıt Edilen İvmelenme Sinyallerinin Zaman Domeni ÖzelliklerininDegerlendirilmesi

Sabri ALTUNKAYA

Kil Çamuru Örneklerinin Akış Özellikleri ile Seramik Ham/Pişmiş Ürünlerin Özellikleri Arasındaki İlişki

Sedef DİKMEN, Bahri ERSOY, Zeyni ARSOY, Tuğba MUCUR

Nesnelerin İnterneti Tabanlı Akıllı Park Sistemleri İncelemesi

Erdem UYSAL, Abdullah ELEWI, Erdinç AVAROĞLU

Kent Parklarının Kullanıcı Memnuniyetinin Niğde Örneğindeİncelenmesi

Orhun SOYDAN