Hidrojen Peroksitin Elektrokimyasal Tayini İçin Paladyum Katkılı İndirgenmiş Grafen Oksit Kompozitinin Tek Basamaklı Yeşil Sentezi

Bu çalışmada, hidrojen peroksitin elektrokimyasal tayini için bir basamakta yeşil yöntemle sentezlenmiş paladyum katkılı indirgenmişgrafen oksit kompozitine (Pd@rGO) dayalı modifiye bir elektrosensör geliştirilmiştir. Elektrosensörün elektrokimyasal özellikleri,döngüsel voltametri (CV) ve diferansiyel puls voltametri (DPV) teknikleriyle değerlendirilmiştir. Pd@rGO kompozit ile modifiyeedilmiş camsı karbon elektrot, modifiye edilmemiş camsı karbon elektroduna (GCE) göre üstün bir elektroaktivite sergilemiştir.Elektrosensor 0.12 μM saptama limiti ile 10 μM ve 1.0 mM derişim aralığında hidrojen peroksite karşı iyi bir performans göstermiştir.Sensörün seçiciliği, glikoz, askorbik asit, dopamin, parasetamol ve ürik asit gibi girişim yapan çeşitli biyolojik moleküllerin varlığındaaraştırılmıştır. Sonuçlar, elektrosensörün girişim yapan maddelere karşı önemli bir cevap vermediği belirlenmiştir.

One-pot Green Synthesis of Palladium Doped Reduced GrapheneOxide Composite For Electrochemical Determination of HydrogenPeroxide

In the present study, a modified electrosensor based on one-pot green synthesized palladium doped reduced graphene oxide composite(Pd@rGO) has been developed for the electrochemical determination of hydrogen peroxide. The electrochemical features of theelectrosensor was appraised by cyclic voltammetry (CV) and differential puls voltammetry (DPV) techniques. The Pd@rGO modified glassy carbon electrode exhibited a superior electroactivity as against to unmodified glassy carbon electrode (GCE). It demonstrated asuperior performance toward hydrogen peroxide in the concentration range of 10 μM and 1.0 mM with a detection limit of 0.12 μM.The selectivity of the sensor was investigated in the presence of various biological interferents like glucose, ascorbic acid, dopamine,paracetamol and uric acid. The results showed that the electrosensor had no considerable reponse to those of intererent substances.

___

  • Al-Marri, A.H., Khan, M., Shaik, M.R., Mohri, N., Adil, S.F., Kuniyil, M., Alkhathlan, H.Z., Al-Warthan, A., Tremel, W., Tahir, M.N., Khan, M., Siddiqui, M.R.H. (2016). Green synthesis of Pd@graphene nanocomposite: Catalyst for the selective oxidation of alcohols. Arabian Journal of Chemistry, 9, 835-845.
  • Amanulla, B., Palanisamy, S., Chen, S.M., Velusamy, V., Chiu, T.W., Chen, T.W., Ramaraj, S.K. (2017). A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite. Journal of Colloid and Interface Science, 487, 370-377.
  • Apyari, V.V., Terenteva, E.A., Kolomnikova, A.R., Garshev, A.V., Dmitrienko, S.G., Zolotov, Y.A. (2019). Potentialities of differently-stabilized silver nanoparticles for spectrophotometric determination of peroxides. Talanta, 202, 51-58.
  • Bai, J., Jiang, X. (2013). A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments. Analytical Chemistry, 85(17), 8095-8101.
  • Binzet, R. (2016). A new species of Onosma L. (Boraginaceae) from Anatolia. Turkish Journal of Botany, 40, 194-200.
  • Chettri, P., Vendamani, V.S., Tripathi, A., Singh, M.K., Pathak, A.P., Tiwari, A. (2017). Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue. Applied Surface Science, 406, 312-318.
  • Chua, C.K., Pumera, M. (2015). Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction. ACS Nano, 9, 4193-4199.
  • Das, T.K., Bhawal, P., Ganguly, S., Mondal, S., Das, N. Ch. (2018). A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surfaces and Interfaces, 13, 79-91.
  • De Silva, K.K.H., Huang, H.H., Joshi, R.K., Yoshimura M. (2017). Chemical reduction of graphene oxide using green reductants. Carbon, 119, 190-199.
  • Dhara, K., Ramachandran, T., Nair, B.G., Babua, T.G.S. (2016). Au nanoparticles decorated reduced graphene oxide for the fabrication of disposable nonenzymatic hydrogen peroxide sensor. Journal of Electroanalytical Chemistry, 764, 64-70.
  • dos Santos, P.L., Katic, V., Toledo, K.C.F., Bonacin, J.A. (2018). Photochemical one-pot synthesis of reduced graphene oxide/Prussian blue nanocomposite for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. Sensors and Actuators B: Chemical, 255, 2437- 2447.
  • Eda, G., Chhowalla, M. (2010). Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Advanced Materials, 22, 2392-2415.
  • Gan, L., Li, B., Chen, Y., Yu, B., Chen, Z. (2019). Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: A waste-to-resource supply chain. Chemosphere, 219, 148-154.
  • Gan, L., Li, B., Chen, Y., Yu, B., Chen, Z. (2019). Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: A waste-to-resource supply chain. Chemosphere, 219, 148-154.
  • Gao, F., Wang, Q., Gao, N., Yang, Y., Cai, F., Yamane, M., Gao, F., Tanaka, H. (2017). Hydroxyapatite/chemically reduced graphene oxide composite: Environment-friendly synthesis and high-performance electrochemical sensing for hydrazine. Biosensors and Bioelectronics, 97, 238-245.
  • Geim, A.K. (2009). Graphene: Status and Prospects. Science 324, 1530-1534.
  • Geim, A.K., Novoselov, K.S. (2007). The rise of graphene. Nature Materials, 6, 183-191.
  • Golsheikh, A.M., Yeap, G.Y., Yam, F.K., Lim, H.S. (2020). Facile fabrication and enhanced properties of copper-based metal organic framework incorporated with graphene for nonenzymatic detection of hydrogen peroxide. Synthetic Metals, 260, 116272.
  • Guo, Z.Y., Feng, Y.F., Chen, Y.Y., Yao, Q.H., Luo, H.Z., Chen, X. (2020). A taurine-functionalized 3D graphene-based foam for electrochemical determination of hydrogen peroxide. Talanta, 208, 120356.
  • Hsu, K.C., Chen, D.H. (2014). Green synthesis and synergistic catalytic effect of Ag/reduced graphene oxide nanocomposite. Nanoscale Research Letters, 9, 484.
  • Kayan, D.B., Turunc, E. (2021). Bio‐reduced GO/Pd nanocomposite as an efficient and green synthesized catalyst for hydrogen evolution reaction. International Journal of Energy Research, 1-11. https://doi.org/10.1002/er.6597.
  • Khan, M., Kuniyil, M., Shaik, M.R., Khan, M., Adil, S.F., AlWarthan, A., Alkhathlan, H.Z., Tremel, W., Tahir, M.N., Siddiqui, M.R.H. (2017). Plant Extract Mediated EcoFriendly Synthesis of Pd@Graphene Nanocatalyst: An Efficient and Reusable Catalyst for the Suzuki-Miyaura Coupling. Catalysts, 7, 20.
  • Kıranşan, K.D., Aksoy, M., Topçu, E. (2018). Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications. Materials Research Bulletin, 106, 57-65.
  • Lin, D., Su, Z., Wei, G. (2018). Three-dimensional porous reduced graphene oxide decorated with MoS2 quantum dots for electrochemical determination of hydrogen peroxide. Materials Today Chemistry, 7, 76-83.
  • Liu, T., Zhang, S., Liu, W., Zhao, S., Lu, Z., Wang, Y., Wang, G., Zou, P., Wang, X., Zhao, Q., Rao, H. (2020). Sensors and Actuators B: Chemical, 305, 127524.
  • Muralikrishna, S., Cheunkar, S., Lertanantawong, B., Ramakrishnappa, T., Nagaraju, D.H., Surareungchai, W., R. Balakrishna, G., Reddy, K.R. (2016). Journal of Electroanalytical Chemistry, 776, 59-65.
  • Nasrollahzadeh, M., Sajadi, S.M., Vartooni, A.R., Alizadeh, M., Bagherzadeh, M. (2016). Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. Journal of Colloid and Interface Science, 466, 360-368.
  • Nayak S.P., Ramamurthy, S.S., Kumar, J.K.K. (2020). Green synthesis of silver nanoparticles decorated reduced graphene oxide nanocomposite as an electrocatalytic platform for the simultaneous detection of dopamine and uric acid. Materials Chemistry and Physics, 252, 123302.
  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
  • Palanisamy, S., Lee, H.F., Chen, S.M., Thirumalraj, B. (2015). An Electrochemical Facile Fabrication of Platinum Nanoparticle Decorated Reduced Graphene Oxide; Application for Enhanced Electrochemical Sensing of H2O2. RSC Advances, 5, 105567-105573.
  • Salazar, P., Fernandez, I., Rodríguez, M.C., Creus, A.H., Mora, J.L.G. (2019). One-step green synthesis of silver nanoparticle-modified reduced graphene oxide nanocomposite for H2O2 sensing applications. Journal of Electroanalytical Chemistry, 855, 113638.
  • Saleem, H., Haneef, M., Abbasi, H.Y. (2018). Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Materials Chemistry and Physics, 204, 1-7.
  • Tajiki, A., Abdouss, M., Sadjadi, S., Mazinani, S. (2020). Voltammetric Detection of Nitrite Anions Employing Imidazole Functionalized Reduced Graphene Oxide as an Electrocatalyst. Electroanalysis, 32, 2290-2298.
  • Thakur, S., Karak, N. (2015). Alternative methods and naturebased reagents for the reduction of graphene oxide: A review. Carbon, 94, 224-242.
  • Turunc, E., Gumus, I., Arslan, H. (2020). Redox active Co(II) complex modified carbon paste electrode for the determination of dopamine. Materials Chemistry and Physics, 243, 122597.
  • Turunc, E., Kahraman, O., Binzet, R. (2021). Green synthesis of silver nanoparticles using pollen extract: Characterization, assessment of their electrochemical and antioxidant activities. Analytical Biochemistry, 621, 114123.
  • Wu, Q., Sheng, Q., Zheng, J. (2016). Nonenzymatic amperometric sensing of hydrogen peroxide using a glassy carbon electrode modified with a sandwich-structured nanocomposite consisting of silver nanoparticles, Co3O4 and reduced graphene oxide. Microchimica Acta, 183, 1943- 1951.
  • Xie, L., Xu, Y., Cao, X. (2013). Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 107, 245-250.
  • Yao, Z., Yang, X., Wu, F., Wu, W., Wu, F. (2016). Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium(IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchimica Acta, 183, 2799-2806.