Gama Işını Koruması için Volkanik Kaya İle Güçlendirilmiş Epoksi Kompozitler

Bu çalışmada, epoksi reçine polimer matrisinin gama ışını koruma kabiliyeti Van'ın farklı bölgelerinden toplanan üç volkanik kaya tozu ile arttırılmaya çalışılmıştır. Volkanik kayaçların kimyasal içerikleri X-ışını Floresans spektroskopisi ile belirlenmiştir. Ağırlıkça % 0’dan 40'a kadar değişen oranlarda volkanik kaya içeren yeni epoksi / volkanik kaya kompozitler hazırlanmıştır. Numunelerin gama ışını koruma performansları, Ba-133 nokta radyoaktif kaynaktan yayılan 81 keV ve 356 keV enerjili fotonlar için deneysel olarak NaI (Tl) detektörü ile ölçülmüştür. Numunelerin gama radyasyonunu koruma yetenekleri kütle zayıflama katsayısı, yarı tabaka değeri kalınlığı ve ortalama serbest yol mesafesi açısından değerlendirilmiştir. Düşük maliyetli epoksi / volkanik kaya kompozitlerinin, gama ışınları için radyasyon koruyucu bir ortam olarak kullanılacak umut verici bir potansiyele sahip olduğu tespit edilmiştir. Özellikle, tüm volkanik kaya katkı maddeleri arasında, en yüksek hematit içeriğine sahip olan volkanik kaya katkı maddesi, her iki foton enerjisinde saf epoksiye  en iyi gama ışını koruma kabiliyetini kazanmıştır.

Volcanic Rock Reinforced Epoxy Composites for Gamma Ray Shielding

In the present study, gamma ray shielding capability of epoxy resin polymer matrix was tried to enhance with three volcanic rock powders collected from different regions of Van, Turkey. The chemical contents of the volcanic rocks were determined by X-ray Fluorescence spectroscopy.  The novel epoxy/volcanic rock composites were prepared with different volcanic rock contents varying from 0 % wt. to 40% wt. The gamma ray shielding performances of the samples were measured experimentally by NaI(Tl) detector for the photons with of 81 keV and 356 keV energies emitted from Ba-133 point radioactive source. The abilities of the samples to shield gamma radiation were evaluated in terms their mass attenuation coefficient, half layer value thickness and mean free path distance. It was determined that the low cost epoxy/volcanic rock  composites have a promising potential to be utilized as a radiation shielding medium for the gamma rays.  In particular, among all volcanic rock additives the volcanic rock additive having the highest hematite content gained the best gamma ray shielding ability to pure epoxy for both photon energies.

___

  • Abdel-Aziz, M., Gwaily, S., Makarious, A., & Abdo, A. E.-S. (1995). Ethylene-propylene diene rubber/low density polyethylene/boron carbide composites as neutron shields. Polymer degradation and stability, 50(2), 235-240.
  • Azman, N. N., Siddiqui, S., Hart, R., & Low, I.-M. (2013). Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites. Applied Radiation and Isotopes, 71(1), 62-67. Azman, N. Z. N., Siddiqui, S. A., & Low, I. M. (2013). Synthesis and characterization of epoxy composites filled with Pb, Bi or W compound for shielding of diagnostic x-rays. Applied Physics A, 110(1), 137-144.
  • Chen, P., & Wang, D. (2011). Epoxy resin and its application. Chemical Industry Press, Beijing, 78. Chen, S., Bourham, M., & Rabiei, A. (2015). Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams. Radiation Physics and Chemistry, 117, 12-22. Le Bas, M., Le Maitre, R., & Woolley, A. (1992). The construction of the total alkali-silica chemical classification of volcanic rocks. Mineralogy and Petrology, 46(1), 1-22.
  • Li, R., Gu, Y., Wang, Y., Yang, Z., Li, M., & Zhang, Z. (2017). Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Materials Research Express, 4(3), 035035. Li, R., Gu, Y., Zhang, G., Yang, Z., Li, M., & Zhang, Z. (2017). Radiation shielding property of structural polymer composite: continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Composites Science and Technology, 143, 67-74.
  • Limkitjaroenporn, P., Chewpraditkul, W., Kaewkhao, J., & Tuscharoen, S. (2011). Effective atomic number of lead sodium borate glass systems at 662 keV. Energy Res. J, 2(1), 29-33.
  • Nambiar, S., & Yeow, J. T. (2012). Polymer-composite materials for radiation protection. ACS applied materials & interfaces, 4(11), 5717-5726.
  • Oto, B., Yıldız, N., Akdemir, F., & Kavaz, E. (2015). Investigation of gamma radiation shielding properties of various ores. Progress in Nuclear Energy, 85, 391-403.
  • Sayyed, M. (2016a). Bismuth modified shielding properties of zinc boro-tellurite glasses. Journal of Alloys and Compounds, 688, 111-117.
  • Sayyed, M. (2016b). Investigation of shielding parameters for smart polymers. Chinese journal of physics, 54(3), 408-415.
  • Singh, K., Singh, H., Sharma, V., Nathuram, R., Khanna, A., Kumar, R., . . . Sahota, H. S. (2002). Gamma-ray attenuation coefficients in bismuth borate glasses. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194(1), 1-6.
  • Singh, N., Singh, K. J., Singh, K., & Singh, H. (2006). Gamma-ray attenuation studies of PbO–BaO–B2O3 glass system. Radiation Measurements, 41(1), 84-88.
  • Singh, S., Kumar, A., Singh, D., Thind, K. S., & Mudahar, G. S. (2008). Barium–borate–flyash glasses: as radiation shielding materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(1), 140-146.
  • Thibeault, S. A., Kang, J. H., Sauti, G., Park, C., Fay, C. C., & King, G. C. (2015). Nanomaterials for radiation shielding. MRS Bulletin, 40(10), 836-841.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç