Enerji Uygulamasında Co katkılı MOF-5/Poliimit Karışık Matriksli Membranlar Kullanarak Hidrojen Ayrımı

Evrende bol miktarda bulunan hidrojen; su tarafından üretilebilmesi, kolayca depolanabilmesi, termal, mekanik ve elektrik enerjisine dönüşebilmesi özelliklerinden dolayı geleceğin enerji taşıyıcısı olarak düşünülebilmektedir. Hidrojenin enerji taşıyıcısı olarak kullanabilmesi için içinde bulunduğu gaz karışımından ayrılması gerekmektedir. Membran yöntemi kullanılarak hidrojen ayırma, diğer ayırma yöntemlerine göre daha az enerji yoğunluğuna sahiptir ve çevre dostudur. Gaz ayırma membranlarının performansının arttırılması ve membran özelliklerinin daha iyi hale gelmesi için karışık matriksli membranlar geliştirilmiştir. Karışık matriksli membranlarda dolgu maddesi olarak kullanılabilen, yüksek yüzey alanı ve gözenek hacmine sahip metal organik kafesler (MOF), H2 gazı ayırma özelliklerini iyileştirmektedir. Bu çalışmada, MOF-5 ve Co katkılı MOF-5 partikülleri sentezlenmiş, karakterize edilmiş ve dolgu maddesinin H2 gaz geçirgenliği üzerindeki etkisini araştırmak için poliimit(PI) içine ilave edilmiştir. Farklı yükleme oranlarına sahip katkılı MOF-5/PI karışık matriksli membranlar (ağırlıkça %5, %10 ve %15) üretilmiştir ve karakterizasyonları farklı analiz teknikleriyle gerçekleştirilmiştir. Gaz analiz sonuçları, MOF-5 ve Co katkılı MOF-5 dahil olmak üzere karışık matriksli membranda H2 gazının geçirgenliğinin, oda sıcaklığında ve 500 kPa'lık basınç altında farklı yükleme oranlarında (ağırlıkça% 5,% 10,% 15) arttığını göstermiştir. Ayrıca, metal katkılı MOF/PI’in, saf PI ve MOF-5/PI ile karşılaştırıldığında en yüksek gaz geçirgenlik özelliklerine sahip olduğu görülmüştür.

Hydrogen Separation Using Co-doped MOF-5/Polyimide Mixed Matrix Membrane for Energy Application

Hydrogen is the most abundant element in the universe, can be produced by water, stored easily, conversed into thermal, mechanicaland electrical energy. Because of these properties, it can be considered as the energy carrier of the future. In order to use hydrogen asenergy carrier, it must be separated from the gas mixture. Hydrogen separation using membrane method has the advantage over otherseparation methods due to its less energy intensive and environmental friendly properties. Mixed matrix membrane (MMM) has beendeveloped so as to membrane properties become better and increase the performance of gas separation membranes. MOFs as a newfillers in MMM with high surface area and pore volume, enhance the H2 gas separation properties. In this study, MOF-5 and Co-dopedMOF-5 particles were synthesized, characterized and incorporated into polyimide to investigate the effect of filler on the H2 gaspermeation. Co-doped MOF-5/PI MMMs with different loading rate (5wt.%, 10wt.%, 15wt.%) were fabricated. The characterizationwas performed by different analysis techniques. The gas analyses results showed that permeability of H2 gas in mixed matrixmembrane including MOF-5 and Co-doped MOF-5 particules were enhanced with increasing the loading rate (5wt.%, 10wt.%,15wt.%) at room temperature and pressure of 500 kPa. Furthermore, metal doped MOFs/PI is the highest gas permeation propertiescompared to pure PI and MOF-5/PI.

___

  • Adatoz, E., Avci, A. K., & Keskin, S. (2015). Opportunities and challenges of MOF-based membranes in gas separations. Separation and Purification Technology, 152(Supplement C), 207-237.
  • Adhikari, S., & Fernando, S. (2006). Hydrogen Membrane Separation Techniques. Industrial & Engineering Chemistry Research, 45(3), 875-881.
  • Arjmandi, M., & Pakizeh, M. (2014). Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment. Journal of Industrial and Engineering Chemistry, 20(5), 3857-3868.
  • Botas, J. A., Calleja, G., Sánchez-Sánchez, M., & Orcajo, M. G. (2010). Cobalt Doping of the MOF-5 Framework and Its Effect on Gas-Adsorption Properties. Langmuir, 26(8), 5300-5303.
  • Dincer, I. (2002). Technical, environmental and exergetic aspects of hydrogen energy systems. International Journal of Hydrogen Energy, 27(3), 265-285.
  • Feijani, E. A., Mahdavi, H., & Tavasoli, A. (2015). Poly(vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications. Chemical Engineering Research and Design, 96(Supplement C), 87-102.
  • Huang, L., Wang, H., Chen, J., Wang, Z., Sun, J., Zhao, D., & Yan, Y. (2003). Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous and Mesoporous Materials, 58(2), 105-114.
  • Jain, I. P. (2009). Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy, 34(17), 7368-7378.
  • Li, H., Shi, W., Zhao, K., Li, H., Bing, Y., & Cheng, P. (2012). Enhanced Hydrostability in Ni-Doped MOF-5. Inorganic Chemistry, 51(17), 9200-9207. doi:10.1021/ic3002898
  • Li, J., Cheng, S., Zhao, Q., Long, P., & Dong, J. (2009). Synthesis and hydrogen-storage behavior of metal–organic framework MOF5. International Journal of Hydrogen Energy, 34(3), 1377-1382.
  • Liu, Y., Ng, Z., Khan, E. A., Jeong, H.-K., Ching, C.-b., & Lai, Z. (2009). Synthesis of continuous MOF-5 membranes on porous αalumina substrates. Microporous and Mesoporous Materials, 118(1–3), 296-301.
  • Ozturk, B., & Demirciyeva, F. (2013). Comparison of biogas upgrading performances of different mixed matrix membranes. Chemical Engineering Journal, 222, 209-217.
  • Perez, E. V., Balkus, K. J., Ferraris, J. P., & Musselman, I. H. (2009). Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 328(1), 165-173.
  • Sabouni, R., Kazemian, H., & Rohani, S. (2010). A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies. Chemical Engineering Journal, 165(3), 966-973.
  • Shao, L., Low, B. T., Chung, T.-S., & Greenberg, A. R. (2009). Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 327(1), 18-31.
  • Shu, Husain, S., & Koros, W. J. (2007). A General Strategy for Adhesion Enhancement in Polymeric Composites by Formation of Nanostructured Particle Surfaces. The Journal of Physical Chemistry C, 111(2), 652-657.
  • van den Berg, A. W. C., & Arean, C. O. (2008). Materials for hydrogen storage: current research trends and perspectives. Chemical Communications(6), 668-681.
  • Weng, T. H., Tseng, H. H., & Wey, M. Y. (2010). Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation. International Journal of Hydrogen Energy, 35(13), 6971-6983.
  • Yang, J.-M., Liu, Q., & Sun, W.-Y. (2014a). Co(II)-doped MOF-5 nano/microcrystals: Solvatochromic behaviour, sensing solvent molecules and gas sorption property. Journal of Solid State Chemistry, 218(Supplement C), 50-55.
  • Yang, J.-M., Liu, Q., & Sun, W.-Y. (2014b). Shape and size control and gas adsorption of Ni(II)-doped MOF-5 nano/microcrystals. Microporous and Mesoporous Materials, 190(Supplement C), 26-31.
  • Züttel, A. (2003). Materials for hydrogen storage. Materials Today, 6(9), 24-33.