Çiçek Görüntü Sınıflandırılmasında Ön Eğitimli Evrişimsel Sinir Ağlarının Performans Karşılaştırması

Çiçek sınıflandırması botonikten, ekolojik çalışmalara kadar birçok alan için önemlidir. Çiçek görüntülerinin net şekilde belirgin olmaması, yaprakların, dalların görüntüyü kapatması ve benzer özellikte çiçeklerin çok olması sınıflandırma çalışmalarında rastlanan zorluklardandır. Çalışmada internetten alınan 3670 çiçekten oluşan veri seti kullanılarak sınıflandırma çalışması yapılmıştır. Son dönemde görüntü sınıflandırma çalışmalarında derin öğrenme yöntemleri kullanılarak oldukça başarılı sonuçlara ulaşılmaktadır. Bu çalışma derin öğrenme modellerinden ön eğitimli evrişimsel sinir ağları (ESA) AlexNet, GoogLeNet, SqueezeNet, ShuffleNet ve Resnet-18 ile sınıflandırma çalışması yapılarak performansları karşılaştırmalı olarak irdelenmiştir. Karşılaştırma neticesinde en başarılı sonuca %97.26 doğruluk oranına sahip olan GoogLeNet ile ulaşılmıştır. Diğer modeller için elde edilen başarı oranları sırasıyla ShuffleNet, SqueezeNet, ResNet-18 ve AlexNet için %97.23, %92.84, %91.42 %89.05’tir. Çalışmada GoogLeNet modeli bu çalışmadaki modellerin yanı sıra aynı veri seti ile yapılan diğer alışmalar içinde en yüksek başarıya ulaşan model olmuştur.

Performance Comparison of Pre-Trained Convolutional Neural Networks in Flower Image Classification

Flower classification is important for many fields from botonics to ecological studies. The difficulties encountered in classification studies are that flower images are not clearly evident, leaves and branches obscure the image, and there are many flowers with similar characteristics. In the study, classification study was carried out using the data set consisting of 3670 flowers taken from the internet. Recently, very successful results have been achieved by using deep learning methods in image classification studies. In this study, the performances of the deep learning models were examined comparatively by making a classification study with the pre-trained convolutional neural networks (CNN) AlexNet, GoogLeNet, SqueezeNet, ShuffleNet and Resnet-18. As a result of the comparison, the most successful result was obtained with GoogLeNet, which has an accuracy rate of 97.26%. The accuracy rate was calculated as 97.23%, 92.84%, 91.42% 89.05% for ShuffleNet, SqueezeNet, ResNet-18 and AlexNet, respectively. In addition to the models in this study, the GoogLeNet model in the study was the model that achieved the highest success among other studies conducted with the same data set.

___

  • Acikgoz, H. (2022). A novel approach based on integration of convolutional neural networks and deep feature selection or short-term solar radiation forecasting. Applied Energy, (305). doi:https://doi.org/10.1016/j.apenergy.2021.117912.
  • Atik, I. (n.d.). COVID-19 Case Forecast with Deep Learning BiLSTM Approach: The Turkey Case. International Journal of Mechanical Engineering, 7(1), 6307–6314.
  • Cho, S.-Y., & Lim, P.-T. (2006). A novel Virus Infection Clustering for Flower Images Identification. In 18th International Conference on Pattern Recognition (ICPR’06) (Vol. 2, pp. 1038–1041). doi:10.1109/ICPR.2006.144
  • Coşkun, U. A., & Demi̇rhan, A. (2022). Farklı Çiçek Türlerini Derin Öğrenme Yöntemi İle Tanıma. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(70), 55–64. doi:10.21205/deufmd.2022247007
  • Das, M., Manmatha, R., & Riseman, E. M. (1999). Indexing flower patent images using domain knowledge. IEEE Intelligent Systems and Their Applications, 14(5), 24–33. doi:10.1109/5254.796084
  • Demir, F., Abdullah, D. A., & Sengur, A. (2020). A New Deep CNN Model for Environmental Sound Classification. IEEE Access, (8), 66529–66537.
  • Guo, B., Hu, J., Wu, W., Peng, Q., & Wu, F. (2019). The Tabu_Genetic Algorithm: A Novel Method for Hyper-Parameter Optimization of Learning Algorithms. Electronics, 8(5). doi:10.3390/electronics8050579
  • Guru, D., Kumar, Y. H., & Shantharamu, M. (2010). Texture Features and KNN in Classification of Flower Images. International Journal of Computer Applications,Special Issue on RTIPPR, 1, 21–29.
  • Hiary, H., Saadeh, H., Saadeh, M. K., & Yaqub, M. (2018). Flower classification using deep convolutional neural networks. IET Comput. Vis., 12, 855–862.
  • Kaggle. (2021, December 6). Kaggle. Kaggle data set. dataset. Retrieved from https://www.kaggle.com/datasets
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
  • Liu, Y., Tang, F., Zhou, D., Meng, Y., & Dong, W. (2016). Flower classification via convolutional neural network. In 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA) (pp. 110–116). doi:10.1109/FSPMA.2016.7818296
  • Luus, F. P. S., Khan, N., & Akhalwaya, I. (2019). Active Learning with TensorBoard Projector. CoRR, abs/1901.00675. Retrieved from http://arxiv.org/abs/1901.00675
  • Narayanan, B. N., Ali, R., & Hardie, R. C. (2019). Performance analysis of machine learning and deep learning architectures for malaria detection on cell images (Vol. 11139, p. 111390W). Presented at the Applications of Machine Learning, International Society for Optics and Photonics.
  • Nilsback, M.-E., & Zisserman, A. (2006). A Visual Vocabulary for Flower Classification. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) (Vol. 2, pp. 1447–1454). doi:10.1109/CVPR.2006.42
  • Nilsback, M.-E., & Zisserman, A. (2008). Automated Flower Classification over a Large Number of Classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics Image Processing (pp. 722–729). doi:10.1109/ICVGIP.2008.47
  • Nilsback, M.-E., & Zisserman, A. (2010). Delving Deeper into the Whorl of Flower Segmentation. Image Vision Comput., 28(6), 1049–1062. doi:10.1016/j.imavis.2009.10.001
  • Sarıgül, M., Ozyildirim, B. M., & Avci, M. (2019). Differential convolutional neural network. Neural Networks, 116, 279–287. doi:https://doi.org/10.1016/j.neunet.2019.04.025
  • Shailendrakumar, M. M., Sachin, R. G., & Dattatraya, S. B. (2011). On Scale Invariance Texture Image Retrieval using Fuzzy Logic and Wavelet Co-occurrence based Features. International Journal of Computer Applications, 18, 10–17.
  • Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/11231
  • Toğaçar, M., Ergen, B., & Cömert, Z. (2019). A Deep Feature Learning Model for Pneumonia Detection Applying a Combination of mRMR Feature Selection and Machine Learning Models. IRBM. doi:10.1016/j.irbm.2019.10.006
  • Tseng, V. S., Wang, M.-H., & Su, J.-H. (2005). A New Method for Image Classification by Using Multilevel Association Rules. In 21st International Conference on Data Engineering Workshops (ICDEW’05) (pp. 1180–1180). doi:10.1109/ICDE.2005.164
  • Ucar, F., & Korkmaz, D. (2020). COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Medical Hypotheses, 140, 109761–109761. doi:10.1016/j.mehy.2020.109761
  • Wu, Y., Qin, X., Pan, Y., & Yuan, C. (2018). Convolution Neural Network based Transfer Learning for Classification of Flowers. 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), 562–566.
  • Xia, X., Xu, C., & Nan, B. (2017). Inception-v3 for flower classification.
  • Zhang, X., Zhou, X., Lin, M., & Sun, J. (2017). ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç
Sayıdaki Diğer Makaleler

Time Series Forecasting of Honey Production in Turkey

Burcu ERDAL, Tolga TİPİ

Doğrusal olmayan kesirli fark denklemlerinin kararlılık analizi üzerine bir not: Karşılaştırmalı yaklaşım

Halis Can KOYUNCUOĞLU, Nezihe TURHAN TURAN

Derin Öğrenme Yöntemleri ile Demiryolu Bağlantı Elemanlarının Sınıflandırılması

Mehmet SEVİ, İlhan AYDIN, Mehmet KARAKÖSE

Çok Değişkenli Kalibrasyon Teknikleri Kullanılarak Demir, Kobalt ve Nikelin Birlikte Spektrofotometrik Tayini

Ceren TALYAK BAĞDU, Rukiye SAYGILI CANLIDİNÇ, Adnan KENAR, Mustafa TAŞTEKİN

Ayrıklaştırma Yöntemlerinin Karar ağaçlar ve Karar Kuralları Sınıflandırıcılar için Medikal Veri Setleri Üzerinde Karşılaştırılması

Yılmaz KAYA, Ramazan TEKİN

Raylı Sistemler için Asenkron Cer Motor Tasarımı ve Performans Analizi

Enes ULU, Kamuran Nur BEKİROĞLU, Fatma KESKİN ARABUL, Ahmet Yiğit ARABUL

Gıdalarda Katkı Maddesi ve Çözücü Olarak Kullanılan Propilen Glikol Üzerine Değerlendirmeler

Ayşe KARADAĞ, Osman SAĞDIÇ, Salih KARASU

Örnek Bir Yapıda Kazık Mesafe Değişiminin Kazık Tasarımına Etkisinin İncelenmesi

Şeref TOPLU, Ali ATEŞ

Büyükbaş Hayvansal Atıklardan Elde Edilebilir Biyogaz ve Elektrik Üretim Potansiyelin Belirlenerek Sayısal Haritaların Oluşturulması

Hasan ERTOP, Atılgan ATILGAN, Burak SALTUK, Ercüment AKSOY

Sigorta Sektöründe Makine Öğrenmesi ile Çapraz Satış Modeli Oluşturma Üzerine Bir Örnek Çalışma

Yunus Emre ÖZDEMİR, Selim BAYRAKLI