Çok Değişkenli Kalibrasyon Teknikleri Kullanılarak Demir, Kobalt ve Nikelin Birlikte Spektrofotometrik Tayini

Bu çalışmada, çok değişkenli kalibrasyon teknikleri kullanılarak demir kobalt ve nikel tayininde, spektrofotometrik olarak elde edilen veriler kemometrik yöntemler ile hesaplanmıştır. 5-seviyeli tasarıma göre Fe(III), Co(II), Ni(II) metalleri ile 0; 0.1; 0.2; 0.3; 0.4 mg/L seviyelerinde training set (kalibrasyon çözeltileri) hazırlanmıştır. Metal katyonlarının kompleksleştirilmesinde ligand olarak [4-(2-Piridilazo) rezorsinol] (PAR) reaktifi kullanılmıştır. pH, sıcaklık, kompleksleşme süresi, kompleks stokiyometrisi, alt tayin sınırı ve yabancı türlerin bozucu etkileri gibi deneysel parametreler araştırılmış ve optimum koşullar belirlenmiştir. Absorpsiyon spektrumları, Ultraviyole-Görünür bölge (UV-GB) spektrofotometresi ile alınmış ve sonuçlar klasik en küçük kareler (CLS), temel bileşen regresyonu (PCR) ve kısmi en küçük kareler (PLS1) teknikleri ile hesaplanmıştır. Bu tekniklerden PRESS (prediction error sum of squares) değerleri hesaplanarak en uygun yöntem olarak PCR yöntemi seçilmiştir. Cross validasyon (çapraz validasyon) işlemine göre training set içerisindeki her bir çözelti numune kabul edilerek hesaplamalar yapılmış ve % geri kazanımlar Fe(III) için 97,16±2,98, Co(II) için 98,78±3,24 ve Ni(II) için 101,89±2,98 olarak hesaplanmıştır.

Simultaneously Spectrophotometric Determination of Iron, Cobalt and Nickel by Using Multivariate Calibration Techniques

In this study, for the simultaneously determination of iron, cobalt and nickel, the data obtained spectrophotometrically using multivariate techniques were calculated by the chemometric methods. According to the 5-level design, training set (calibration solutions) were prepared at 0; 0.1; 0.2; 0.3; 0.4 mg/L levels for Fe(III), Co(II), Ni(II) ions. For the complexation of metal cations [4-(2-Pyridylazo) resorcinol] (PAR) reagent was used as ligand. Experimental parameters such as pH, temperature, complexation time, stoichiometry of the complex, limit of detection and effects of interfering species were investigated and optimum conditions were determined. Absorption spectra were obtained by Ultraviolet-Visible (UV-VIS) spectrophotometer and results were calculated by classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS1) techniques. Among these techniques, PRESS (prediction error sum of squares) values were calculated and decided that the most suitable method was PCR. According to the cross validation process, each solution in the training set was accepted as a sample and calculations were made and the % recoveries were found to be as 97.16±2.98, 98.78±3.24 and 101.89±2.98 for Fe(III), Co(II) and Ni(II), respectively.

___

  • Albayrak, M., Demirkaya-Miloglu, F., Senol, O., Polatdemir, E. (2019). Design, optimization, and validation of chemometrics-assisted spectrophotometric methods for simultaneous determination of etodolac and thiocolchicoside in pharmaceuticals. Journal of Analytical Science and Technology, 10:16.
  • Anonim, (2008). Demir. https://tr.wikipedia.org/wiki/Demir (Erişim Tarihi: 21.06.2021)
  • Bekiroğlu Ataş, H., Kenar, A., Taştekin, M. (2020). An electronic tongue for simultaneous determination of Ca2+, Mg2+, K+ and NH4+ in water samples by multivariate calibration methods. Talanta, 217, 1-12.
  • Biller, D.V., Bruland, K.B. (2012). Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS). Marine Chemistry, 130-131, 12-20.
  • Brereton, R.G. (1997). Multilevel Multifactor Design for Multivariate Calibration. The Analyst, 122, 1521-1529.
  • Brereton, R.G. (2003). Chemometrics: Data Analysis for the Laboratory and Chemical Plant. Journal of Analytical Chemistry, 60(10), 994-996.
  • Brereton, R.G., Jansen, J., Lopes, J., Marini, F., Pomerantsev, A., Rodionova, O., Roger, J.M., Walczak, B., Tauler, R. (2018). Chemometrics in analytical chemistry-part II: modeling, validation, and applications. Analytical and Bioanalytical Chemistry, 410, 6691-6704.
  • Bro, R., Smilde, A. K. (2014). Principal component analysis. The Royal Society of Chemistry, 6, 2812–2831.
  • Dinç, E. (2007). Kemometri Çok Değişkenli Kalibrasyon Yöntemleri. Hacettepe Üniversitesi Eczacılık Fakültesi Dergisi, 1, 61-92.
  • Dinç, E., Üstündağ, Ö., (2005). A New Application of Chemometric Techniques to HPLC Data fort he Simultaneous Analysis of a Two-Component Mixture. Journal of Liquid Chromatography&Related Technologies, 28, 2179-2194.
  • Garcia Rodriguez, A.M., Garcia de Torres, A., Cano Pavon, J.M., Bosch Ojeda, C. (1998). Simultaneous determination of iron, cobalt, nickel and copper by UV-Görünür bölgeible spectrophotometry with multivariate calibration. Talanta, 47, 463-470.
  • Gemperline, P. (2006). Practical Guide to Chemometrics Second Edition. Taylor&Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, 520s.
  • Gilardi, G., Di Nardo, G. (2017). Heme iron centers in cytochrome P450: structure and catalytic activity. Renciconti Lincei, 28, 159-167.
  • Kaba, A., Aktaş, A.H. (2014). Çeşitli ligandları kullanarak Fe3+, Al3+ ve Cu2+ nin bir arada spektrofotometrik tayinleri için yöntem geliştirilmesi ve elde edilen verilerin en küçük kareler kalibrasyon yöntemi (PLS) ve temel bileşen regresyon (PCR) yöntemi ile değerlendirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Dergisi, 18, 71-79.
  • Kumlay, A. M., Koçak, M. Z., Öztürk, E., (2021). Zilan Vadisi’indeToplanan (Van-Erciş) Yenen Yabani Mantar (Chlorophyllum agaricoides, Mycenastrum corium ve Paxina queletii) Örneklerindeki Ağır Metal İçeriklerinin Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, 25, 291-294.
  • Meyer, D., Prien, R.D., Dellwig, O., Connelly D.P., Schulz-Bull, D. E. (2012). In situ determination of iron(II) in the anoxic zone of the central Baltic Sea using ferene as spectrophotometric reagent. Marine Chemistry, 130-131, 21-27.
  • Okatan, A. (2010). Solvent Ekstraksiyon Tekniği ile Kobalt ve Nikelin Sinerjistik Ekstraksiyonu. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 83s, Sakarya.
  • Olson, E.J., Bühlmann, P. (2011). Getting More out of a Job Plot: Determination of Reactant to Product Stoichiometry in Cases of Displacement Reactions and n:n Complex Formation. The Journal of Organic Chemistry, 76, 8406-8412.
  • Pekcan Ertokuş, G., Bineci Doğan, M. (2020). Simultaneous Determination of Binary Drug Components in Pharmaceutical Formulations with Chemometric Methods. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 1171-1179.
  • Safavi, A., Abdollahi, H., Mirzajani, R. (2006). Simultaneous spectrophotometric determination Fe(III), Al(III) and Cu(II) by partial least-squares calibration method. Spectrochimica Acta Part A 63, 196-199.
  • Sun, Z., Gong, C., Ren, J., Zhang, X., Wang, G., Liu, Y., Ren, Y., Zhao, Y., Yu, Q., Wang, Y., Hou, J. (2020). Toxicity of nickel and cobalt in Japanese flounder, Environmental Pollution, 263, 1-10.
  • Wang, P., Lee, H.K. (1997). Recent applications of high-performance liquid chromatograpgy to the analysis of metal complexes. Journal of Chromatography, 789, 437-451.
  • Zhu, X., Chen, L., Pumpanen, J., Keinanen, M., Laudon, H., Ojala, A., Palviainen, M., Kiirikki, M., Neitola, K., Berninger, F. (2021). Assessment of a portable UV–Vis spectrophotometer’s performance for stream water DOC and Fe content monitoring in remote areas. Talanta, 224, 1-8.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç