İstilacıCentaurea Solstitialis Bitkisi Kullanılarak Sulu Çözeltilerden Malahit Yeşil Boya Giderimi ve Tepki Yüzey Yöntemi ile Optimizasyon: Kinetik, İzoterm ve Termodinamik Çalışma

İstilacı bitkiler, tarım ürünlerinin gelişimini engelleyerek ürün verimini azaltmaktadır. Bu çalışmada, sentetik bir boya olan Malachite Green (MG)'nin sulu çözeltiden uzaklaştırılmasında tarımsal atık olan istilacı Centaurea Solstitialis (CS) bitkisi adsorban olarak kullanılmıştır. Adsorbent - adsorbate ilişkisi, spektrofotometrik yöntem ve Fourier dönüşüm infrared (FTIR) ile incelenmiştir. Yüzey morfolojisi taramalı elektron mikroskobu (SEM) ile belirlenmiştir. CS yüzey alanı Brunauer, Emmett ve Teller (BET) analizi ile ölçülmüştür. Deney tasarımı ve modellemesinde RSM kullanılmış ve korelasyon faktörü 0,984 olarak bulunmuştur. Optimum çalışma koşulu olan 312.5 mg.$L^{-1}$MG içeren çözeltiye (pH=7.5) 0.325 g CS (30 mesh) koyularak 150 rpm’de 75 dakika çalkalanmıştır. Çalışmada CS tanecik boyutu 30 mesh ve çalkalama hızı 150 rpm sabit tutulmuştur. Optimum çalışma koşullarında CS’nin maksimum adsorpsiyon kapasitesi 90.816 mg.$g^{-1}$ bulunmuştur. Sonuçlar Langmuir, Freundlich, Temkin ve Dubinin-Radushkevich (DR) izotermleri ile değerlendirilmiştir. Sonuç olarak adsorpsiyon işleminin Temkin izotermine (0,997 $R^2$ ) uyan yalancı ikinci dereceden ($R^2$ = 0.9982) bir kinetik reaksiyon olduğu bulunmuştur. İntrapartikül difüzyon modeli, sırasıyla sınır difüzyon tabakası ve partikül içi difüzyon etkilerini göstermiştir. Adsorpsiyonun -4,47 KJ.$mol^{-1}$ Gibbs serbest enerjisi ile endotermik olduğu bulunmuştur. Desorpsiyon çalışmasında maksimum %2.16’lık bir verim elde edilmiştir. Bu sonuç CS üzerine adsorbe olan MG’nin tekrar suya karışma ihtimalinin düşük olduğunu göstermektedir. Daha sonra kolon çalışmalarına geçilmiştir. Kolonun verimliliği, 40. dakikada % 99.5'e ulaşmış ve bundan sonra sabit kalmıştır. Sonuç olarak, CS’nin, sulu çözeltiden MG gideriminde etkili bir adsorbent olduğu bulunmuştur

Malachite Green Dye Removal from Aqueous Solutions Using Invader Centaurea Solstitialis Plant and Optimization by Response Surface Method: Kinetic, Isotherm, and Thermodynamic Study

Invasive plants reduce the yield by inhibiting the development of agricultural products. In this study, invasive (CS) plant which isagricultural waste was used as adsorbent for removal of Malachite Green (MG) from aqueous solution. The adsorbent - adsorbaterelationship was examined by the spectrophotometric method and Fourier transform infrared (FTIR). The surface morphology wasdetermined by scanning electron microscope (SEM). CS surface area was measured by Brunauer, the Emmett and Teller (BET)analysis. The experiments were designed and modeled by RSM. The correlation factor of the developed model was 0.984. Thecapacity of 90.816 mg.$g^{-1}$ was achieved when MG solution with concentration of 312.5 mg.$L^{-1}$ was adsorbed onto 0.325 g CS for 75min at a pH of 7.5. In this work the shaking velocity and the adsorbent size were 150 rpm and 30 mesh respectively. Langmuir,Freundlich, Temkin, and Dubinin-Radushkevich (D-R) isotherms were studied. Temkin isotherm had the highest $R^2$ of 0.997. Thekinetics models of the adsorption process were investigated and fitted with pseudo-second-order kinetic ($R^2$ = 0.9982). Theintraparticle diffusion model reflected the involved two steps; the first comprehended the boundary diffusion layer, while the secondintroduced the intraparticle diffusion effects. The adsorption was found to be endothermic with a Gibbs free energy of -4.47 KJ.$mol^{-1}$.It was noted that the adsorption process was irreversible with a max percentage of desorption process of 2.16%. Column experimentswere conducted to realize the adsorption process. The efficiency of the column reached 99.5% after 40 min and stilled constant. As aresult, CS has shown a potential for MG removal from aqueous solution.

___

  • Abd-El-Kareem, M., & Taha, H. (2012). Decolorization of malachite green and methylene blue by two microalgal species. Int J Chem Environ, 3, 297-302.
  • Aharoni, C., & Ungarish, M. (1977). Kinetics of activated chemisorption. Part 2. Theoretical models. J. Chem. Soc. Faraday Trans., 73, 456–464.
  • Aliyan, H., Fazaeli, R., & Jalilian, R. (2013). Fe3O4 at mesoporous SBA-15: a magnetically recoverable catalyst for photodegradation of. Appl Surf Sci, 276, 147–153. doi:10.1016/j.apsusc.2013.03.049
  • Bagheri, A. R., Arabi, M., Ghaedi, M., Ostovan, A., Wang, X., Li, J., & Chen, L. (2019). Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta, 195, 390-400.
  • Bai, C., Xiao, W., Feng, D., & al, e. (2013). Efficient decolorization of Malachite Green in the Fenton reaction catalyzed by [Fe (III)- salen] Cl complex. Chem Eng J, 215-216, 227-234. doi:10.1016/j.cej.2012.09.124
  • Bapat, S., & Jaspal, D. (2016). Parthenium hysterophorus: novel adsorbent for the removal of heavy metals and dyes. Glob. J. Environ. Sci. Manag., 2, 135-144. doi:http://dx.doi.org/10.7508/gjesm.2016.02.004.
  • Belhouchat, N., Zaghouane-Boudiaf, H., & Viseras, C. (2017). Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Appl. Clay Sci, 135, 9-15.
  • Bezerraa, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., Ame, L., & Escaleira, l. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965-977.
  • Bojinova, A., & Dushkin, C. (2011). Photodegradation of malachite green in water solutions by means of thin films of TiO2/WO3 under visible light. React Kinet Mech Catal, 103, 239–250. Doi: 10.1007/s11144-011-0295-2
  • Bouaziz, F., Koubaa, M., Kallel, F., Ghorbel, R. E., & Chaabouni, S. E. (2017). Adsorptive removal of malachite green from aqueous solutions by almond gum: Kinetic study and equilibrium isotherms. International Journal of Biological Macromolecules, 105, 56- 65.
  • Chen, F., Ma, W., He, J., & Zhao, J. (2002). Fenton degradation of malachite green catalyzed by aromatic additives. J Phys Chem A, 106, 9485–9490. Doi: 10.1021/jp0144350
  • Chieng, H., Lim, L., & Priyantha, N. (2015). Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. Environ Technol, 36, 86-97.
  • Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. (2012). MWH’s Water Treatment Principles and Design (Third Edition Ed.). New Jersey: John Wiley & Sons, Inc.
  • Dabrowski, A. (2001). Adsorption—from theory to practice. Adv. Colloid Interface Sci., 93, 135–224.
  • Dahri, M. K., Kooh, M. R., & Lim, L. B. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2, 1434- 1444.
  • Freundlich, H. (1906). Over the adsorption in solution. J. Phys.Chem., 57, 385-470.
  • Gadekar, M. R., & Ahammed, M. M. (2019). Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach. J. Environ. Manag. 231, 241-248.
  • Gunay, A., Arslankaya, E., & Tosun, I. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J.Hazard. Mater, 146, 362–371.
  • Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. (2016). Application of potato (Solanumtuberosum) plantwastes for the removal of methylene blue and malachite green dye form aqueous solution. Arabian Journal of Chemistry (9), 707-716. Retrieved from https://doi.org/10.1016/j.arabjc.2011.07.021
  • Gupta, V. (2009). Application of low-cost adsorbents for dye removal- A review. J. Environ. Manag. 90, 2313-2342.
  • Gupta, V. K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ. Eng. Res., 1(20), 1-18.
  • Hasnat, M., Siddiquey, I., & Saiful, I. (2003). Photodegradation of malachite green in the aqueous medium. Indian J Chem Sect A, 42, 1865–1867.
  • Khamparia, S., & Jaspal, D. K. (2017). Xanthium strumarium L. seed hull as a zero cost alternative for Rhodamine B dye removal. J. Environ. Manag. 197, 498-506.
  • Khan, T., Sharma, S., & Ali, I. (2011). Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: equilibrium. J. Toxicol. Env. Health Sci., 3, 286-297.
  • Khattri, S., & Singh, M. (2009). Removal of malachite green from dye wastewater using neem sawdust by adsorption. J Hazard Mater, (167), 1089-1094. Retrieved from https://doi.org/10.1016/j.jhazmat.2009.01.101
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. . Am. Chem. Soc., 40, 1361-1403.
  • Levin, L., Papinutti, L., & Forchiassin, F. (2004). Evaluation of Argentinean white rot fungi for their ability to produce ligninmodifying enzymes and decolorize industrial dyes. Bioresour Technol, 94, 169–176. doi:10.1016/j.biortech.2003.12.002
  • Man, L., Kumar, P., Teng, T., & Wasewar, K. (2012). Design of experiments for malachite green dye removal from wastewater using thermolysis—coagulation–flocculation. Desalin Water Treat, 40, 260-271. doi:10.1080/19443994.2012.671257
  • Mittal, A., Mittal, J., Malviya, A., & Gupta, V. (2009). Adsorptive removal of hazardous anionic dye ‘‘Congo Red’’ from wastewater using waste materials and recovery by desorption. J. Colloid Interface, 340, 16-26. doi:10.1016/j.jcis.2009.08.019
  • Modirshahla, N., & Behnajady, M. (2006). Hot oxidative degradation of malachite green (MG) by UV/H2O2: influence of operational parameters and kinetic modelling. Dyes Pigments, 70, 54-59. doi:10.1016/j.dyepig.2005.04.012
  • Pal, P., & Pal, A. (2017). Surfactant-modified chitosan beads for cadmium ion adsorption. Int. J.Biol. Macromol. 104, 1548-1555.
  • Pirsaheb, M., Shahmoradi, B., Khosravi, T., & al, e. (2015). Solar degradation of malachite green using nickel-doped TiO2 nanocatalysts. Desalin Water Treat, 57, 9881–9888. doi:10.1080/19443994.2015.1033764
  • Raval, N., Shah, P., & Shah, N. (2016). Nanoparticles loaded biopolymer as effective adsorbent for adsorptive removal of malachite green from aqueous solution. Water Conserv Sci Eng, 1, 69-81. Doi: 10.1007/s41101-016-0004-0
  • Robati, D. (2013). Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multiwalled carbon nanotube. J. Nanostructure Chem., 3(55).
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 77, 247-255. doi:http://dx.doi.org/10.1016/S0960-8524 (00)00080-8.
  • Roosta, M., Ghaedi, M., Shokri, N., Daneshfar, A., Sahraei, R., & Asghari, A. (2014). Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: experimental design. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 118, 55-65.
  • Sartape, S.A., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry, 10, S3229-S3238.
  • Salamata, S., Hadavifar, M., & Rezaei, H. (2019). Preparation of nanochitosan-STP from shrimp shell and its application in removing of malachite green from aqueous solutions. Journal ofEnvironmental Chemical Engineering, 7. doi:https://doi.org/10.1016/j.jece.2019.103328
  • Saleh, M., Yalvaç, M., & Arslan, H. (2019). Optimization of Remazol Brilliant Blue R Adsorption onto Xanthium Italicum using the Response Surface Method. Karbala International Journal of Modern Science, 5(1). doi:10.33640/2405-609X.1017
  • Salleh, M. A., Mahmoud, D. K., Karim, W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination (280), 1-13. Retrieved from http://dx.doi.org/10.1016/j.desal.2011.07.019
  • Saravanan, R., Sacari, E., Gracia, F., Khan, M., Mosquera, E., & Gupta, V. (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 221, 1029-1033. doi:10.1016/j.molliq.2016.06.074
  • Sartepe, A. S., Mandhare, A. M., Jadjav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry (10), 3229-3238. Retrieved from https://doi.org/10.1016/j.arabjc.2013.12.019
  • Saxena, S., & Raja, A. (2014). Natural Dyes: Sources, Chemistry, Application and Sustainability Issues. In Muthu S. (Eds) Roadmap to Sustainable Textiles and Clothing (pp. 37-80). Singapore: Textile Science and Clothing Technology. Springer.
  • Tempkin, M., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim, USSR 12, 327–356.
  • Tobías, S., Ignacio, D., Lorena, A., Gustavo, P., Matías, L., Isabela, O., Sebastian, B. (2018). Design and testing of a pilot scale magnetic separator for the treatment of textile dyeing wastewater. J. Environ. Manag. 218, 562-568.
  • TÜİK, T. (2018). Paint Industry in Turkey and the World. Paint Istanbul& Turkcoat 2018. Istanbul. Retrieved 08 19, 2019, from http://www.turkcoat-paintistanbul.com/uploads/files/Paintistanbul_Turkcoat_2018_Preview.pdf
  • Wang, X., Zhou, Y., Jiang, Y., & Sun, C. (2008). The removal of basic dyes from aqueous solutions using agricultural by-products. J Hazard Mater, 157, 374-385.
  • Yang, J., Chen, C., Ji, H., & al, e. (2005). Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. J Phys Chem B, 109, 21900–21907. Doi: 10.1021/jp0540914
  • Zhou, X.-J., Guo, W.-Q., Yang, S.-S., & al, e. (2013). Ultrasonic-assisted ozone oxidation process of triphenylmethane dye degradation: evidence for the promotion effects of ultrasonic on malachite green decolorization and degradation mechanism. Bioresour Technol, 128, 827-830. doi:10.1016/j.biortech.2012.10.086
  • Khan, T., Rahman, R., Ali, I., & et.al. (2014). Removal of malachite green from aqueous solution using waste pea shells as low-cost adsorbent—adsorption isotherms and dynamics. Toxicol Environ Chem, 96, 569-578. doi:10.1080/02772248.2014.969268
  • Sartape, A., Mandhare, A., Jadhav, V., & et. al. (2015). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab J Chem. doi:10.1016/j.arabjc.2013.12.019
  • Srivastava, R., & Rupainwar, D. (2011). A comparative evaluation for adsorption of dye on Neem bark and Mango bark powder. Indian J Technol, 18, 67-75.
  • Zhou, Y., Min, Y., Qiao, H., & et. al. (2015). Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride. Int J Biol Macromol, 74, 271-277. doi:10.1016/j.ijbiomac.2014.12.020
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç