${}^{124,125}{Te(p,xn})$ ${}^{123,124}I$ ve ${}^{123,124}{Te(d,xn)}$ ${}^{123,124}I$ İçin Reaksiyon Tesir Kesitleri

İyodin izotopları, 13.2 saat yarı ömürlü ${}^{123}I$ ve 4.2 gün yarı ömürlü${}^{124}I$, son zamanlarda genelde nükleer tıp alanında yaygın olarak kullanılırlar. ${}^{123}I$ izotopu hastaya çok daha düşük bir radyasyon dozu verir ve 159 keV gama ışını enerjisine sahip bir gama kamerası için idealdir, oysa radyonüklid${}^{124}I$bir positron yayıcıdır ve radyofarmasötikler için bazı pozitron emisyon tomografisinde (PET) yararlıdır. Gama ışını, aşırı radyasyon dozu olmadan dokuya çok etkili bir şekilde nüfuz eder. ${}^{123}I$, elektron yakalama ile 0.028 ve 0.160 MeV'de iki ana gama ışını ile %100 bozunur. 4.2 d'nin yarı ömrü, monoklonal antikorlarla lokalizasyon için yeterince uzundur ve %23 pozitron bozunması, PET ile görüntülemeye izin verir. ${}^{124}I$, hem diagnostik hem de terapötik bir radyonüklid olarak potansiyele sahiptir. Bu çalışmada, ${}^{123}I$ ve ${}^{124}I$ için önerilen çeşitli üretim mekanizmaları için uyarma fonksiyonları hesaplanmıştır. ${}^{123,124, 125};Te$ hedef çekirdeklerinin protonlar ve döteryumlarla indüklenmesi sonucu tıbbi uygulamalarda yaygın olarak kullanılan ${}^{123,124,};I$radyoizotoplarının retilmesini sağlayan nükleer reaksiyonları için reaksiyon tesir kesitleri TALYS 1.6 kullanılarak hesaplandı. Hesaplamalardan elde edilen sonuçlar EXFOR deneysel veri tabanında mevcut olan deneysel sonuçlarla karşılaştırılmıştır. Sonuçlar hangi radoizotopun hangi reaksiyon ile üretilmesinin daha uygun olacığına karar vermek ve reaksiyon mekanizmalarında yer alan etkilerin değerlendirilmesi açısından yorumlanmıştır. Ayrıca, ${}^{124}TE$ hedefinin protonlarla indüklenmesiyle elde edilen ${}^{123,124};I$ radyoizotoplarının göreceli reaksiyon tesir kesitleri tartışılmış ${}^{123}I$ üretimi için ortak reaksiyonun oldukça zenginleştirilmiş ${}^{124}Te$ üzerindeki ${}^{124}Te$ (p, 2n) ${}^{123}I$ reaksiyonu olduğu değerlendirilmiştir. Böylece bir reaksiyon esnasında (p, n) ve (p, 2n) gibi birbiriyle yarışması muhtemel reaksiyon mekanizmalarının oluşturduğu kontaminasyonun önüne geçilmesi için hedef üzerinde oldukça yüksek düzeyde zengişlendirme işleminin öncelikli olarak yapılmasının bir gereklilik olduğu düşünülmektedir. ${}^{123}I$ üretiminin küçük ve orta boy siklotronlar için daha uygun olduğu sonucuna varılmıştır.

The Reaction Cross Sections for ${}^{124,125}{Te(p,xn})$${}^{123,124}I$ and ${}^{123,124}{Te(d,xn)}$ ${}^{123,124}I$

The iodine isotopes of ${}^{123}I$ and${}^{124}I$with half lives of 13.2 hours and of 4.2 days respectively are commonly used in nuclear medicineand are becoming more widespread recently. The isotope of ${}^{123}I$ is ideal for a gamma camera with the energy of 159 keV to the patientwith a much less radiation dose whereas the radionuclide ${}^{124}I$ is a positron emitter and is useful in some positron emission tomography(PET) for radiopharmaceuticals. The gamma ray will penetrate tissue very effectively without an excessive radiation dose. Iodine-123decays by electron capture emitting gamma rays at 0.028 and 0.160 MeV that has high penetration power to tissue but no excessiveradiation dose. The half-life of 4.2 d and the 23% positron decay allow localization with monoclonal antibodies, and the PET imagingwhich makes Iodine-124 radionuclide a good candidate for being a diagnostic and a therapeutic.This study aims on the calculation ofthe excitation functions for ${}^{123}I$ and ${}^{124}I$ various production mechanisms. TALYS 1.6 is used to calculate the reaction cross sections for${}^{123,124, 125};Te$ bombarded with protons and deuteriums to produce ${}^{123,124,};I$ radioisotopes commonly used in medical applications. Thecalculated results were compared with available experimental results from EXFOR. The results are interpreted in terms of decidingwhich radoisotope is more appropriate to produce with which reaction and evaluating the effects in the reaction mechanisms. In addition,the relative reaction cross-sections of 123,124I radioisotopes obtained by bombarding ${}^{124}Te$ target with protons were discussed, and thecommon reaction for the production of ${}^{123}I$ was evaluated to be the 124Te(p, 2n)123I reaction on the highly enriched ${}^{124}Te$. Thus, it isconsidered that a very high level of enrichment on the target must be achieved in order to prevent contamination caused by competingreactions of (p, n) and (p,2n). It is concluded that ${}^{123}I$ production is more suitable for small and mediumi-sized cyclotrons.

___

  • Balatoni J. FR, Blasberg R., Tjuvajev J., Larson S., (1999). Production and Quality Assurance of Cyclotron Produced Iodine-124 from Enriched Tellurium Targets. In: Duggan JLaM, I. L., editor. CP 475 - Applications of Accelerators in Research and Industry: The American Institute of Physics; p. 984-6.
  • Bastian T., Coenen H.H., Qaim S.M., (2001). Excitation functions of deuteron induced reactions on 123Te: Relevance to the production of 123I and 124I at low and medium sized cyclotrons. Applied Radiation and Isotopes. 55, 303-308.
  • Beyer G.J., Damm C., Odrich H., Pimentel G., (1981). Production of I-123 at the Rossendorf U-120 Cyclotron. Radiochemical and Radioanalytical Letters. 1981;47:151-5.
  • Braghirolli A.M.S., Waissmann W., da Silva J.B., dos Santos G.R., (2014). Production of Iodine-124 And Its Applications In Nuclear Medicine. Applied Radiation and isotopes Volume 90, pp. 138–148.
  • Clem R.G., Lambrecht R.M., (1991). Enriched Te-124 Targets For Production of I-123 and I-124. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment. 303:115-118.
  • EXFOR, https://www-nds.iaea.org/exfor/exfor.htm (15 January 2020).
  • Firouzbakht M.L., Schlyer D.J., Finn R.D., Laguzzi G., Wolf AP., (1993). Iodine-124 production: excitation function for the 124Te(d,2n)124I and 124Te(d,3n)123I reactions from 7 to 24 MeV. Nuclear Instruments & Methods in Physics Research Section BBeam Interactions with Materials and Atoms. 79, 909-910.
  • Glaser M., Brown D.J., Law M.P., Iozzo P., Waters S.L., Poole K., et al., (2001). Preparation of no-carrier-added I-124 A(14)- iodoinsulin as a radiotracer for positron emission tomography. Journal of Labelled Compounds & Radiopharmaceuticals, 44:465- 80.
  • Goriely S., (1998). Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis. Phys.Lett.B, 436, 10-18.
  • Gürol A., Sarpün İ.H., Yalım H.A., (2020). 57Co Radyoizotopu Üretimi için Bazı Alfa Girişli Reaksiyonların Uyarılma Fonksiyonlarının İncelenmesi. Eskişehir Technical University Journal of Science and Technology B- Theoretical Sciences, 8:1, 88-98.
  • Herzog H., Tellmann L., Qaim S.M., Spellerberg S., Schmid A., Coenen H.H., (2002). PET quantitation and imaging of the non-pure positronemitting iodine isotope I-124. Applied Radiation and Isotopes. 56, 673-679.
  • Hohn A., Nortier F.M., Scholten B., van der Walt T.N., Coenen H.H., Qaim S.M., (2001). Excitation functions of 125Te(p, xn)-reactions from their respective thresholds up to 100 MeV with special reference to the production of 124I. Applied Radiation and Isotopes. 55:2, 149-156.
  • International Atomic Energy Agency (IAEA), (2009). Cyclotron Produced Radionuclides: Physicsal Characteristics and Production Methods’; Technical Reports Series No. 468; VIENNA.
  • Kondo K., Lambrecht R.M., Wolf A.P., (1977). Iodine-123 production for radiopharmaceuticals—XX: Excitation functions of the 124Te(p, 2n)123I and 124Te(p, n)124I reactions and the effect of target enrichment on radionuclidic purity. The International Journal of Applied Radiation and Isotopes Volume 28, Issue 4, Pages 395–401.
  • Koning A. J., Hilaire S., Duijvestijin., 2007. Proceedings of The International Conference on Nuclear Data for Science and Technology, (Eds.:Bersillon O., Gunsing F., Bauge E., Jacqmin R., Leray S.) EDP Sciences, Nice, pp. 211-214.
  • Michael H, Rosezin H, Apelt H, Blessing G, Knieper J, Qaim SM., (1981). Some Technical Improvements in the Production of 123I via the 124Te(p,2n)123I Reaction at a Compact Cyclotron. Int. J. Appl. Radiat. Isot. 32, 581.
  • Pentlow K.S., Graham M.C., Lambrecht R.M., Daghighian F., Bacharach S.L., Bendriem B., et al., (1996). Quantitative imaging of iodine-124 with PET. Journal of Nuclear Medicine. 37, 1557-1562.
  • Sadeghi M., Enferadi M., Tenreiro C., (2010). Nuclear Model Calculations on the Production of Auger Emitter 165Er for Targeted Radionuclide Therapy. J. Mod Physics, Volume 1, pp. 217–225.
  • Sadeghi M., Dastan M., Ensaf M.R., Tehrani A.A., Tenreiro C., Avila M., (2008). Thick tellurium electrodeposition on nickel-coated copper substrate for I-124 production. Applied Radiation and Isotopes, 66:1281-6. doi:10.1016/j.apradiso.2008.02.082.
  • Scholten B., Kovács Z., Tárkányi F., Qaim S.M., (1995). Excitation functions of 124Te(p, xn)123,124I reactions from 6 to 31 MeV with special reference to the production of 124I at a small cyclotron. Applied Radiation and Isotopes. 46, 255-259.
  • Scholten B., Takács S., Kovács Z., Tárkányi F., Qaim S.M., (1997). Excitation functions of deuteron induced reactions on 123Te: Relevance to the production of 123I and 124I at low and medium sized cyclotrons. Applied Radiation and isotopes, Volume 48, Issue 2, pp. 267–271.
  • Sheh, Y., Koziorowski, J., Balatoni, J., Lom, C., Dahl, J. R., and Finn, R. D., (2000). Low energy cyclotron production and chemical separation of “no carrier added” iodine-124 from a reusable, enriched tellurium-124 dioxide/aluminum oxide solid solution target. Radiochim. Acta 88, 169-173.
  • Watson I.A., Waters S.L., Silveste Dj., (1973). Excitation Functions for Reactions Producing I-121, I-123 and I-124 From Irradiation of Natural Antimony with He-3 and He-4 Particles with Enegies up to 30-MeV. Journal of Inorganic & Nuclear Chemistry. 35, 3047-3053.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç