Klinoptilolit Dolgulu PVA Membranların Hazırlanması, Karakterizasyonu ve Pervaporasyon ile Desalinasyon Çalışmaları

Membran prosesleri; son yıllarda birçok alanda kendine uygulama alanı bulduğu gibi, tuzlu sudan temiz su eldesine dair çalışmalardada dikkatleri üzerine çekmektedir. Desalinasyon uygulamalarında büyük oranda termal işlemler kullanılmaktadır. Bununla berabermembran uygulamaları su kıtlığının önüne geçebilmek amacıyla büyük önem kazanmaktadır. Membran prosesleri arasındapervaporasyon (yarı seçici buharlaşma), desalinasyona yönelik olarak büyük potansiyele sahiptir ve yoğun membranlar kullanılaraksıvı karışımları ayırmak için kullanılan bir membran prosesidir. Poli(vinilalkol) (PVA) mühendislik uygulamalarında yaygın olarakkullanılan toksik olmayan, suda çözünebilir, biyobozunur, yarı kristalin sentetik bir polimerdir ve pervaporasyon desalinasyonçalışmalarında yüksek performanslı membranların hazırlanmasında yüksek hidrofilitesinden dolayı önemli bir seçenektir. Membranlargenellikle üç ana kategoriye göre sınıflandırılabilir: organik membranlar, inorganik membranlar ve kompozit membranlar. Polimerikmatrislere zeolit gibi inorganik malzeme dolgulamaları ile kompozit karışık matrisli membranların (MMM) hazırlanması mümkündürve bu sayede membran polimer matris ile inorganik dolgu malzemesinin olumlu yönleri polimer membranın fiziksel, kimyasal vetermal özelliklerini iyileştirmek amacıyla tek bir yapıda birleştirilebilir.Bu çalışma kapsamında dolgusuz ve klinoptilolit dolgulanmış (ağırlıkça %10) çapraz bağlı PVA kompozit membranlar çözelti-dökümtekniği kullanılarak hazırlanmıştır. Hazırlanan membranların farklı sıcaklıklarda (30, 40, 50°C) saf su sorpsiyonları belirlenmiş vepervaporasyon ile desalinasyon çalışmaları 30°C sıcaklıkta 35 g/L NaCl içeren sentetik deniz suyu kullanılarak gerçekleştirilmiştir.Hazırlanan membranlar; taramalı elektron mikroskobu (SEM), Fourier dönüşümlü kızılötesi spektroskopisi (FT-IR), termogravimetrikanaliz (TGA) yöntemleriyle karakterize edilmiştir. Dolgusuz PVA ve klinoptilolit dolgulu PVA membranlar için sırasıyla; 1,1712kg/m2h ve 0,8271 kg/$m^2h$ akı ve permeat numunelerinin iletkenlikleri ölçülerek %99,83 ve %99,89 tuz alıkoyma değerleri eldeedilmiştir. Hazırlanan membranların desalinasyon uygulamalarında umut verici özelliklere sahip olduğu ortaya konmuştur.

Preparation and characterization of clinoptilolite incorporated PVA membranes and desalination with pervaporation studies

In recent years, membrane processes has found itself a wide practice area for many applications and has been promising for the treatment of saline water sources. Desalination applications are usually performed with thermal processes. However, membrane applications are gaining importance in order to prevent water scarcity. Pervaporation has great potential among membrane processes for desalination. Pervaporation (permselective evaporation) is a membrane process used to separate the liquid mixtures by using dense membranes. Poly(vinylalcohol) (PVA) is a non-toxic, water-soluble, bio-degradable and semi crystalline synthetic polymer used in a wide of engineering applications, and it is an important option due to its hydrophilicity for the preparation of high-performance membranes in pervaporation desalination studies. Membranes can be classified into three main category: organic membranes, inorganic membranes and composite membranes. It is possible to prepare mixed matrix membranes (MMM) with inorganic material incorporation such as zeolite into polymeric matrices, so that the advantages of polymer matrix and inorganic filler can be combined in a single structure to improve the physical, chemical and thermal properties. In this study, cross-linked unfilled PVA and clinoptilolite-filled PVA (10% wt.) composite membranes were prepared using solutioncasting method. Pure water sorptions in the prepared membranes at different temperatures (30, 40, 50°C) were determined and pervaporation desalination experiments were carried out using synthetic sea water (35 g/L) at 30°C. Membranes were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR). Fluxes of 1,1712 kg/$m^2h$ and 0,8271 kg/m2h for unfilled PVA and clinoptilolite-filled PVA membranes were obtained, respectively, and also salt rejection values of 99,83% and 99,89% were determined by measuring conductivity of permeate samples. Unfilled PVA and clinoptilolite-filled PVA membranes had promising properties in desalination applications.

___

  • Ahmed, F.E., Hashaikeh, R., & Hilal, N. (2019). Solar powered desalination-Technology, energy and future outlook. Desalination, 453, 54-76.
  • An, W., Zhou, X., Liu, X., Chai, P.W., Kuznicki, T., & Kuznicki, S.M. (2014). Natural zeolite clinoptilolite-phosphate composite Membranes for water desalination by pervaporation. Journal of Membrane Science, 470, 431-438.
  • Dong, J., Xu, Z., Yang, S., Murad, S., Hinkle, K.R. (2015). Zeolite membranes for ion separation from aqueous solutions. Current Opinion in Chemical Engineering, 8, 15-20.
  • Drioli, E., Stankiewicz, A.I., & Macedonio F. (2011). Membrane engineering in process intensification—an overview. Journal of Membrane Science, 380, 1–8.
  • Huang R.Y.M. (1991). Pervaporation Membrane Separation Process, Amsterdam: Elsevier.
  • Humplik, T., Lee, J., O’Hern, S.C., Fellman, B.A., Baig, M.A., Hassan, S.F., Atieh, M.A., Rahman, F., Laoui, T., Karnik, R., & Wang E.N. (2011). Nanostructured materials for water desalination. Nanotechnology, 22, 292001.
  • Koohsaryan, E., & Anbia, M. (2016). Nanosized and hierarchical zeolites: A short review. Chinese Journal of Catalysis, 37, 447-467.
  • Kosinov, N., Gascon, J., Kapteijn, F., & Hensen, E.J.M. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65-79.
  • Kowalczyk, P., Sprynskyy, M., Terzyk, A.P., Lebedynets, M., Namiesnik, J., & Buszewski, B. (2006). Porous structure of natural and modified clinoptilolites. Journal of Colloid and Interface Science, 297, 77–85.
  • Noble R. D., & Stern S. A. (1995). Membrane Separations Technology, Principles and Applications. Amsterdam: Elsevier.
  • Reis, E.F., Campos, F.S., Lage, A.P., Leite, R.C., Heneine, L.G., Vasconcelos, W.L., Mansur, H.S. (2006). Synthesis and characterization of poly(vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Materials Research, 9, 185-191.
  • Salt Y., Arçevik E., Ekinci B. (2014). Sorption and Pervaporation Results of Clinoptilolite Filled Poly(vinylalcohol) Membrane Prepared for Dehydration of Aqueous Organic Mixtures, The Canadian Journal of Chemical Engineering, 92(3), 503-510.
  • Salt, Y., Hasanoğlu, A., Salt, İ., Keleşer, S., Özkan, S., & Dinçer, S. (2005). Pervaporation separation of ethylacetate-water mixtures through a crosslinked poly(vinylalcohol) membrane. Vacuum, 79, 215-220.
  • Swenson, B., Tanchuk, B., Gupta, A., An, W., & Kuznicki, S.M. (2012). Pervaporative desalination of water using natural zeolite membranes. Desalination, 285, 68-72.
  • Wang, Q., Li, N., Bolto, B., Hoang, M., & Xie Z. (2016). Desalination by Pervaporation-A review. Desalination, 387, 46-60.
  • Yang C.-C. (2007). Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. Journal of Membrane Science, 288, 51-60.
  • Yang C.-C., Li Y.J., & Liou T.-H. (2011). Preparation of novel poly (vinyl alcohol)/SiO2 nanocomposite membranes by a sol–gel process and their application on alkaline DMFCs. Desalination, 276, 366-372.
  • Yilman, B., Nigiz, F.U., Aytaç, A., & Hilmioglu, N.D. (2018). Multi-walled carbon nanotube doped PVA membrane for desalination. Water Supply, 19, 1229-1237.
  • Zhu, L., Wang, J., Guo, L., & Shen J. (2011). Study on the preparation and properties of the PVA/SiO2 hybrid coating on BOPP film via sol-gel process. Advanced Materials Research, 239-242, 1956-1959.