Tuncbilek Linyitlerinin Kimyasal Çevrim Oksidasyonu Sırasında CoPb Metal Oksitlerin Oksijen Transfer Yetenekleri

Bu çalışma, kobalt-kurşun (Co-Pb) karışık metal oksitlerin Tuncbilek linyitlerininin inert ortamda termal bozunması esnasında göstermiş oldukları oksijen transfer yeteneğini belirlemeyi amaçlamaktadır. Bu metal oksitlerin indirgenme reaksiyonu termodinamik hesaplamaları farklı indirgeyici gazlar için uygun sıcaklıkları belirlemek için yapılmıştır. Co-Pb karışık metal oksitler ıslak emdirme yöntemiyle hazırlanmış ve X-ray kırınımı ve Raman spektrometresi ile karakterize edilmiştir. Bu metal oksitlerin oksijen transfer performansları Termal Gravimetric Analiz (TGA) metoduyla 40-600ºC sıcaklık aralığında azot atmosferinde gerçekleştirilmiştir. TGA sonuçları optimum linyit/ Co-Pb mixed oxide oranının 0.11 olduğunu ortaya koymuştur.

Oxygen Transfer Ability of Co-Pb Metal Oxides during the Chemical Looping Oxidation of Tuncbilek Lignite

The study aims to determine the oxygen transfer ability of cobalt lead (Co-Pb) mixed oxides during the thermal decomposition ofTuncbilek lignite under inert atmosphere. Thermodynamic calculations of reduction reactions of Co-Pb mixed oxides were performedto show the favorable reduction temperatures for the different reductive gases. Co and Pb mixed metal oxides were prepared by wetimpregnation method and they characterized by X-ray diffractometer and Raman spectroscopy. Oxygen transfer performances of theseoxides were evaluated by thermal gravimetric analysis (TGA) in terms of oxidation rates of lignite sample under N2 flows in the rangeof temperatures between 40 to 600ºC. The results of thermal gravimetric analysis (TGA) indicated that the optimum coal to Co-Pb metaloxides ratio based on oxidation efficiency was 0.11.

___

  • Adánez, J., & Abad, A. (2019). Chemical-looping combustion: Status and research needs. Proceedings of the Combustion Institute, 37(4), 4303-4317. doi:https://doi.org/10.1016/j.proci.2018.09.002
  • Adanez, J., de Diego, L. F., Garcia-Labiano, F., Gayan, P., Abad, A., & Palacios, J. M. (2004). Selection of oxygen carriers for chemicallooping combustion. Energy & Fuels, 18(2), 371-377. doi:10.1021/ef0301452
  • Barin, I. (Ed.) (1989). Thermochemical data of pure substances.
  • Bhavsar, S., & Veser, G. (2013). Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion. Industrial & Engineering Chemistry Research, 52(44), 15342-15352. doi:10.1021/ie400612g
  • Cao, Y., & Pan, W. P. (2006). Investigation of chemical looping combustion by solid fuels. 1. Process analysis. Energy & Fuels, 20(5), 1836-1844. doi:10.1021/ef050228d
  • Chen, L. Y., Bao, J. H., Kong, L., Combs, M., Nikolic, H. S., Fan, Z., & Liu, K. L. (2016). The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion. Applied Energy, 184, 9-18. doi:10.1016/j.apenergy.2016.09.085
  • Cho, P., Mattisson, T., & Lyngfelt, A. (2004). Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemicallooping combustion. Fuel, 83(9), 1215-1225. doi:10.1016/j.fuel.2003.11.013
  • Data, I. C. f. D., Selected Powder Diffraction Data for Education & [and] Training: Search Manual and Data Cards. JCPDS: 1988.
  • Fan, L. S., Li, F. X., & Ramkumar, S. (2008). Utilization of chemical looping strategy in coal gasification processes. Particuology, 6(3), 131-142. doi:10.1016/j.partic.2008.03.005
  • Genc, V. E., Altay, F. E., & Uner, D. (2005). Testing molten metal oxide catalysts over structured ceramic substrates for diesel soot oxidation. Catalysis Today, 105(3-4), 537-543. doi:10.1016/j.cattod.2005.06.018
  • Jensen, J. O. (2003). Vibrational frequencies and structural determinations of Pb6O(OH)(6)(4+). Journal of Molecular StructureTheochem, 635, 11-24. doi:10.1016/s0166-1280(03)00378-6
  • Jerndal, E., Leion, H., Axelsson, L., Ekvall, T., Hedberg, M., Johansson, K., . . . Lyngfelt, A. (2011). Using Low-Cost Iron-Based Materials as Oxygen Carriers for Chemical Looping Combustion. Oil & Gas Science and Technology-Revue D Ifp Energies Nouvelles, 66(2), 235-248. doi:10.2516/ogst/2010030
  • Kanca, A. (2013). Characterization and reactivity studies for chemical loop gasification of high sulfur lignites. (PhD), Middle East Technical University.
  • Kanca, A., Dodd, M., Reimer, J. A., & Uner, D. (2016). Following the structure and reactivity of Tuncbilek lignite during pyrolysis and hydrogenation. Fuel Processing Technology, 152, 266-273. doi:10.1016/j.fuproc.2016.06.014
  • Kanca, A., & Uner, D. (2019). In situ and downstream sulfidation reactivity of PbO and ZnO during pyrolysis and hydrogenation of a high-sulfur lignite. International Journal of Hydrogen Energy, 44(34), 18827-18835. doi:10.1016/j.ijhydene.2018.10.041
  • Kim, H. R., Wang, D. W., Zeng, L., Bayham, S., Tong, A., Chung, E., . . . Fan, L. S. (2013). Coal direct chemical looping combustion process: Design and operation of a 25-kW(th) sub-pilot unit. Fuel, 108, 370-384. doi:10.1016/j.fuel.2012.12.038
  • Ksepko, E., Babinski, P., Evdou, A., & Nalbandian, L. (2016). Studies on the redox reaction kinetics of selected, naturally occurring oxygen carrier. Journal of Thermal Analysis and Calorimetry, 124(1), 137-150. doi:10.1007/s10973-015-5107-x
  • Ksepko, E., & Labojko, G. (2014). Effective direct chemical looping coal combustion with bi-metallic Fe-Cu oxygen carriers studied using TG-MS techniques. Journal of Thermal Analysis and Calorimetry, 117(1), 151-162. doi:10.1007/s10973-014-3674-x
  • Ksepko, E., Siriwardane, R. V., Tian, H. J., Simonyi, T., & Sciazko, M. (2010). Comparative Investigation on Chemical Looping Combustion of Coal-Derived Synthesis Gas containing H2S over Supported NiO Oxygen Carriers. Energy & Fuels, 24(8), 4206- 4214. doi:10.1021/ef100490m
  • Ksepko, E., Siriwardane, R. V., Tian, H. J., Simonyi, T., & Sciazko, M. (2012). Effect of H2S on Chemical Looping Combustion of Coal-Derived Synthesis Gas over Fe-Mn Oxides Supported on Sepiolite, ZrO2, and Al2O3. Energy & Fuels, 26(4), 2461-2472. doi:10.1021/ef201441k
  • Larring, Y., Braley, C., Pishahang, M., Andreassen, K. A., & Bredesen, R. (2015). Evaluation of a Mixed Fe-Mn Oxide System for Chemical Looping Combustion. Energy & Fuels, 29(5), 3438-3445. doi:10.1021/acs.energyfuels.5b00048
  • Lopes, I., El Hassan, N., Guerba, H., Wallez, G., & Davidson, A. (2006). Size-induced structural modifications affecting Co3O4 nanoparticles patterned in SBA-15 silicas. Chemistry of Materials, 18(25), 5826-5828. doi:10.1021/cm061630o
  • Matzen, M., Pinkerton, J., Wang, X. M., & Demirel, Y. (2017). Use of natural ores as oxygen carriers in chemical looping combustion: A review. International Journal of Greenhouse Gas Control, 65, 1-14. doi:10.1016/j.ijggc.2017.08.008
  • Sarafraz, M. M., Jafarian, M., Arjomandi, M., & Nathan, G. J. (2018). Potential of molten lead oxide for liquid chemical looping gasification (LCLG): A thermochemical analysis. International Journal of Hydrogen Energy, 43(9), 4195-4210. doi:10.1016/j.ijhydene.2018.01.035
  • Shen, X. P., Miao, H. J., Zhao, H., & Xu, Z. (2008). Synthesis, characterization and magnetic properties of Co3O4 nanotubes. Applied Physics a-Materials Science & Processing, 91(1), 47-51. doi:10.1007/s00339-007-4361-6
  • Siriwardane, R., Tian, H. J., Richards, G., Simonyi, T., & Poston, J. (2009). Chemical-Looping Combustion of Coal with Metal Oxide Oxygen Carriers. Energy & Fuels, 23(8), 3885-3892. doi:10.1021/ef9001605
  • Siriwardane, R. V., Ksepko, E., Tian, H. J., Poston, J., Simonyi, T., & Sciazko, M. (2013). Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal. Applied Energy, 107, 111-123. doi:10.1016/j.apenergy.2013.01.063
  • Uner, D., Demirkol, M. K., & Dernaika, B. (2005). A novel catalyst for diesel soot oxidation. Applied Catalysis B-Environmental, 61(3- 4), 334-345. doi:10.1016/j.apcatb.2005.05.011
  • Velasco-Sarria, F. J., Forero, C. R., Adanez-Rubio, I., Abad, A., & Adanez, J. (2018). Assessment of low-cost oxygen carrier in Southwestern Colombia, and its use in the in-situ gasification chemical looping combustion technology. Fuel, 218, 417-424. doi:10.1016/j.fuel.2017.11.078
  • Yung, M. M., Zhao, Z. K., Woods, M. P., & Ozkan, U. S. (2008). Preferential oxidation of carbon monoxide on CoOx/ZrO2. Journal of Molecular Catalysis a-Chemical, 279(1), 1-9. doi:10.1016/j.molcata.2007.09.026
  • Zafar, Q., Mattisson, T., & Gevert, B. (2005). Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support. Industrial & Engineering Chemistry Research, 44(10), 3485-3496. doi:10.1021/ie048978i
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç