Türkiye'de Rijit ve Esnek Üstyapı Kaplamalarının Yaşam Döngüsü Maliyetlerinin Karşılaştırmalı Bir Değerlendirmesi

Kaplama tipinin seçimi kamu yetkilileri arasında zorlu ve tartışmalı bir konudur. Bu süreç, başlangıç (inşaat) ve yaşam döngüsü maliyetleri kapsamında malzeme, işçilik ve uzun vadeli performans gibi mühendislik faktörlerini içermektedir. Son yıllarda, yol yapımı ve rehabilitasyon süreçlerine harcanan önemli kamu giderleri, artan ulaşım talebinden kaynaklanan araç sahipliği eğilimleri ve yerel kaynaklardaki azalma göz önüne alındığında, kaplama tiplerinin etkinliği konusu tartışılmaya başlanmıştır. Vergi mükellefi olan halkın, yol harcamalarının tam değerini anlayabilmelerini sağlamak için, mümkün olan en uygun inşaat, bakım ve onarım stratejisini hedefleyen bir kaplama tipi seçim sürecinin belirlenmesi önemlidir. Bu çalışmada Kocaeli ilinde inşa edilen 2,2 km uzunluğundaki Silindirle Sıkıştırılmış Beton (SSB) test yolu için bir yaşam döngüsü maliyet analizi yapıldı. Kaplama tercihi olarak SSB yerine asfalt seçilirse, ulusal ölçekte (bu çalışmada Türkiye) ortaya çıkabilecek ekonomik faktörler tartışılmıştır. 20 yıllık hizmet süresi boyunca, bakım, onarım ve rehabilitasyon planlaması 30 yıllık analiz periyoduna göre gerçekleştirilmiştir. İlk inşaat maliyeti açısından SSB yolun, asfalt yoldan %39,4 daha ekonomik olduğu ve servis süresi boyunca da %62 oranında bakım ve onarım ekonomisi sağladığı tespit edilmiştir. Yaşam döngüsü maliyetleri açısından ise SSB yolun asfalt yoldan %46 daha ekonomik bir kaplama tercihi olabileceği belirlenmiştir.Bu durumun ortaya çıkmasında, ilk ciddi onarım faaliyetinin asfaltta 10. ve 20. yılda yapılmasına karşın, SSB kaplamada bu faaliyetin sadece 20. yılda gerçekleşmesi ve asfalt bakım malzemesinin SSB bakım malzemesinden daha pahalı olması etkili olmuştur.

A Relative Assessment of the Life-Cycle Costs of Rigid and Flexible Pavement Coatings in Turkey

Choosing pavement type is a challenging and much-debated issue among public authorities. It includes engineering factors such asmaterials, labor, and long-term performance within the scope of the initial (construction) and life-cycle costs. In recent years, given thesignificant public expenditure on road construction and rehabilitation processes, the trends in vehicle ownership caused by an increasingneed to travel, and the decrease in local resources, concerns have been raised about the efficiency of pavement coating types. To ensurethat taxpayers understand the full value of road expenditure, it is important to identify a coating type selection process that seeks toinclude the most appropriate construction, maintenance, and repair strategies possible. In this study, an LCCA was performed for a 2.2km–long Roller Compacted Concrete (RCC) test track constructed in Kocaeli city. If asphalt is chosen instead of RCC as the coatingpreference, the economic factors that may arise at a national scale (in this case, Turkey) are discussed. During the 20-year service period,maintenance, repair, and rehabilitation planning were carried out on the basis of a 30-year analysis period. In terms of initial constructioncosts, an RCC road is 39.4% more economical than an asphalt road and provides maintenance and repair economies of 62% during theservice period. In terms of life-cycle costs, an RCC road is a 46% more economical paving alternative than an asphalt road. Althoughthe first serious maintenance activity was carried out in the 10th and 20th years of the asphalt road, it was significant that it only tookplace during the 20th year for the RCC road, and the asphalt maintenance material was more expensive than that for the RCC road.

___

  • [1] Wathne L., Pavement Type Selection: What Is The Ideal Process? 12th International Symposium on Concrete Roads, Prague, Czech Republic, 23–26 September 2014.
  • [2] Transportation Research Board (TRB), Guide for Pavement-Type Selection, The National Academies Press, NCHRP-703, 56-70, 2011.
  • [3] Abdelaty A., Jeong H.D., Dannen B., & Todey F., Enhancing life cycle cost analysis with a novel cost classification framework for pavement rehabilitation projects, Construction Management and Economics, 34:10, 724-736, 2016.
  • [4] Guo, Z., & Sultan, S. A., Feasibility of perpetual pavement stage construction in China: A life cycle cost analysis. International Journal of Transportation Science and Technology, 5(4), 239-247, 2016.,
  • [5] Ding, T., Sun, L., & Chen, Z., Optimal strategy of pavement preventive maintenance considering life-cycle cost analysis. ProcediaSocial and Behavioral Sciences, 96, 1679-1685, 2013.
  • [6] Santos, J., & Ferreira, A. (2013). Life-cycle cost analysis system for pavement management at project level. International Journal of Pavement Engineering, 14(1), 71-84.
  • [7] Zheng, X., Easa, S. M., Yang, Z., Ji, T., & Jiang, Z. (2019). Life-cycle sustainability assessment of pavement maintenance alternatives: Methodology and case study. Journal of cleaner production, 213, 659-672.
  • [8] Abut, Y., Yildirim, S. T., Structural design and economic evaluation of roller compacted concrete pavement with recycled aggregates. IOP Conference Series: Materials Science and Engineering, 245, 2017.
  • [9] Abut, Y., Yildirim, S. T., An investigation on the durability properties of RAP-containing roller compacted concrete pavement. European Journal of Environmental and Civil Engineering, 1-17, 2019.
  • [10] Walls J., Smith M.R., Life-Cycle Cost Analysis in Pavement Design—Interim Technical Bulletin, Federal Highway Administration, FHWA-SA-98-079, 9-32, 1998.
  • [11] AASHTO, Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials, Washington DC., 1993.
  • [12] Cross S.A., Parsons R.L., Evaluation of Expenditures on Rural Interstate Pavements in Kansas, 81th Annual TRB Meeting, Washington DC, USA, 13-17 January 2002.
  • [13] Gharaibeh N.G., Darter M., Probabilistic Analysis of Highway Pavement Life for Illinois, Transportation Research Record: Journal of the Transportation Research Board, 1823(1), 2003.
  • [14] Lindley J.K., Clark P.R., Adjustments to Pavement Life-Cycle Cost Analysis Procedures, University Transportation Center for Alabama, UTCA-02409, 13-45, 2003.
  • [15] Lee E., Harvey J., Samadian M., Knowledge-Based Scheduling Analysis Software for Highway Rehabilitation and Reconstruction Projects, Transportation Research Record: Journal of the Transportation Research Board, 1907(1), 15-24, 2005.
  • [16] Ozbay K., Parker N.A., Jawad D., Hussain S., Guidelines for Life Cycle Cost Analysis, Federal Highway Administration, NJ2003-012, 17-55, 2003.
  • [17] TCMA, An alternative to the current account deficit: Roller compacted concrete roads. Turkish Cement Manufacturers' Association, Directorate of Education, Ankara, Turkey, pp. 1–3, 2017
  • [18] Ketema Y., Quezon E. T., Kebede G., Cost and Benefit Analysis of Rigid and Flexible Pavement: A Case Study at Chancho– Derba-Becho Road Project, International Journal of Scientific & Engineering Research, 7(10), 2016.
  • [19] Hein D. K., Smith D. R., Life-Cycle Cost Comparison for Municipal Road Pavements, 9th. International Conference on Concrete Block Paving, Buenos Aires, Argentina, 18-21 Oct. 2009.