Rumenin Mikrobiyel Ekosistemindeki Bakteriler ve Rolleri

Rumenin mikrobiyel ekosistemi; bakteri, archaea, protozoa, mantar ve bakteriofajlardan oluşmaktadır. Bakteriler rumendeki mikrobiyel kitlenin yaklaşık %40-60’nı oluştururlar. Ruminantlar selüloz, hemiselüloz, lignin, nişasta, protein ve çok az miktarda da yağ içeren lignoselülozik yem maddeleri ile beslenirler. Rumen ortamı bu yem bileşenlerini sindirebilen çok çeşitli bakterileri barındırır. Rumende yaklaşık olarak 200’den fazla bakteri türü izole edilmiştir ve en az 20 türün de rumende 107-1010 düzeyinde bulunduğu belirlenmiştir. Rumende ml de 107 den fazla bulunan bakteriler baskın bakteriler olarak değerlendirilmektedir. Bakteriler ve diğer mikrobiyel gruplar arasındaki ilişkiler sonucu rumende uçucu yağ asitleri (UYA), karbondioksit, metan, amonyak ve mikrobiyel hücreler elde edilir. Mikroorganizmalar tarafından üretilen mikrobiyel proteinler ve vitaminler ruminantlar için çok büyük önem taşımaktadır. Rumende bulunan mikrobiyel ekosistemler arasındaki etkileşim şekillenen fermantasyonun ve mikrobiyel topluluğun stabilitesinin devamlılığı için önemlidir. Rumendeki mikroorganizma sayısı ve oranı; rasyonun yapısı, hayvanın türü, uçucu yağ asitlerinin oranı, yemin formu, rumen pH’sı gibi faktörlere göre değişiklik göstermektedir. Bu derlemede rumen bakterilerinin identifikasyonu, karakterizasyonu ve rumen sindirimindeki rollerine yer verilmiştir.

Bacteria of the Rumen Ecosystem and their Roles

The rumen ecosystem compromised of bacteria, archaea, protozoa, fungi, and bacteriophages. Bacteria are the predominant mass of microbiological beings and account for nearly 40-60% of total microbial beings in the rumen. Ruminants are fed mainly on lingocellulosic agricultural by-products which are rich in cellulose, hemicellulose, lignin, starch, protein and a very small quantity of oils. The rumen hosts various types of bacteria which are degrading of these compo-nents of the feed. In the rumen environment more than 200 species of bacteria has been isolated and at least 20 species have been measured at 107-1010 in number. Those of the bacteria which are measured more than 107 are considered as dominant species. Due to the interactions among these respective microbiological groups and bacteria, volatile fatty acids (VFA), carbondioxide, methane, ammonia and other microbiological products are producted. Microbiological proteins and vitamines are seriously essential for ruminants which are synthesised in the rumen. The interractions between various microbiological groups is essential for maintaining fermentation and stability of microbiological sentients. Quantity and ratio of microorganisms in the rumen are posing differences according to the composition of ration, species of animal, ratio of the volatile fatty acids, formation of the feed, pH of the rumen. In this review, the identifications, characterisations and determination of the roles that are partaking of these bacteria in the rumen have been overviewed.

___

  • Asanuma N., Hino T., 2005. Ability to utilize lactate and related enzymes of a ruminal bacterium,Selenomonas ruminantium. J. Anim. Sci., 76, 345–352.
  • Baldwin RL., Allison MJ., 1983. Rumen metabolism. J Anim Sci, 57, 461–477. Be´ra-Maillet C., Ribot Y., Forano E., 2004. Fiber-degrading systems of different strains of the genus fibrobacter. Appl. Environ. Microbiol., 2172–2179.
  • Chaucheyras F., Fonty G., Bertin G., Gouet P., 1995. In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of saccharomyces cerevisiae. Appl. Environ. Microbiol., 61, 3466–3467.
  • Cheong JPE., Brooker JD., 1998. Lysogenic bacteriophage M1 from Selenomonas ruminantium: isolation, characterization and DNA sequence analysis of the integration site. Microbiol, 144, 2195–2202.
  • Chesson A., Forsberg W., 1997. Polysaccharide degradation by rumen microorganisms. In: Hobson PN, Stewart CS. Editors. The Rumen Microbial Ecosystem. Second Edition. London, Blackie Academic & Professional, 329–381.
  • Church DC., 1979. Digestive physiology and nutrition of ruminants. Vol. 2, Nutrition, O & B Book Inc,Corvallis, Oregon.
  • Coccoid Spirochete from the hindgut of the termite Neotermes castaneus. Appl. Environ. Microbiol., 72, 392–397.
  • Dijkstra J., France J., Davies DR., 1998. Different mathematical approaches to estimating microbial protein supply in ruminants. J. Dairy. Sci., 81, 3370–3384.
  • Dröge S., Fröhlich R., Radek R., König H., 2006. Spirochaeta coccoides sp. nov., a Novel
  • Fluharty FL., Dehority BA., 1995. Effects of sugar beet pulp and corn as energy supplements for cattle fed forage diets on diet digestibility and ruminal microorganisms. Special Circular-Ohio Agricultural Research and Development Center Issue: No.156, The Ohio State University, Columbus, Ohio, USA. pp. 51-55. http://ohioline.osu.edu/sc156/sc156_10.html. (Erişim: 14.12.2010).
  • Fondevilla M., Dehority BA., 1995. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages. J. Anim. Sci., 74, 678–684.
  • Forster RJ., Gong J., Teather RM., 1997. Group-specific 16S rRNA hybridization probes for determinative and community structure studies of Butyrivibrio fibrisolvens in the rumen. Appl. Environ. Microbiol., 63, 1256–1260.
  • Ghali MB., Scott PT., Al Jassim RAM., 2004. Characterization of Streptococcus bovis from the rumen of the dromedary camel and Rusa deer. Letters in Appl. Microbiol., 39, 341–346.
  • Hungate RE., 1966. The Rumen and its Microbes. Second Edition. New York: Academic Press, 24, 533.
  • Ivan M., Mir PS., Koenig KM., Rode LM., Neill L., Entz T., Mir Z., 2001. Effects of dietary sunflower seed oil on rumen protozoa population and tissue concentration of conjugated linoleic acid in sheep. Small Ruminant Research, 41, 215–227.
  • Jindou S., Borovok I., Rincon MT., Flint HJ., Antonopoulos DA., Berg ME., White BA., Bayer EA., Lamed R., 2006. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. J. Bacteriol., 118, 7971–7976.
  • Joblin KN., Naylor GE., Williams AG., 1990. The effect of Methanobrevibacter smithii on the xylanolytic activity of anaerobic rumen fungi. Appl. Environ. Microbiol., 56, 2287–2295.
  • Johnson KA., Johnson DE., 1995. Methane emissions from cattle. J. Anim. Sci., 73, 2483–2492.
  • Kamra DN., 2005. Rumen microbial ecosystem. Current Science, 89: 124–135.
  • Klieve AV., Yokoyama MT., Forster RJ., Ouwerkerk D., Bain PA., Mawhinney EL., 2005. Naturally occurring DNA transfer system associated with membrane vesicles in cellulolytic Ruminococcus spp. of ruminal origin. Appl Environ Microbiol, 71, 4248–4253.
  • Krause DO., Dalrymple BP., Smith WJ., Mackie RI., McSweeney CS., 1999. 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: design of a signature probe and its application in adult sheep. Microbiol, 145, 1797–1807.
  • Leedle JA., Bryant MP., Hespell RB., 1982. Diurnal variations in bacterial numbers and fluid parameters in ruminal contents of animals fed low or high forage diets. Appl. Environ. Microbiol., 44, 402-412.
  • Le Van TD., Robinson JA., Ralph J., Greening RC., Smolenski WJ., Leedle JAZ., Schaefer DM., 1998. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Appl. Environ Microbiol, 64, 3429–3436.
  • Lynd LR., Weimer PJ., Van Zyl WH., Pretorius IS., 2002. Microbial cellulose utilization. Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev., 66, 506–577.
  • Margarida RGM., Chaudhary LC., Figueres L., Wallace RJ., 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek, 91, 303–314.
  • Marounek M., Fliegrova K., Bartos S., 1989. Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl. Environ. Microbiol., 55, 1570-1573.
  • Marth EH., Steele JL., 2001. Applied Dairy Microbiology. Second edition. Marcel Dekker. Inc. New York, 1–59.
  • Martin SA., 1992. Effects of extracellular pH and phenolic monomers on glucose uptake by Fibrobacter succinogenes S85. Lett. Appl. Microbiol., 15, 1, 26–28.
  • Martin SA., 1994. Nutrient transport by ruminal bacteria: A Review. J. Anim. Sci., 72, 3019–3031.
  • McAllister TA., Bae HD., Jones GA., Cheng KJ., 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci., 72, 3004–3018.
  • McAllister T., 2000. Learning more about rumen bugs: genetics and environmental factors affecting rumen bugs. Southern Alberta Beef Review, 2, 2921-2927.
  • Meignanalakshmi S., MahalingaNainar A., 2007. Isolation and characterisation of megasphaera elsdenii from bovine rumen. Tamilnadu J. Vet.Anim. Sci., 3, 150–155.
  • Murphy MR., Baldvin RL., Koomg LJ., 1982. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate. J. Anim. Sci., 55, 411-421.
  • Nagaraja TG., Newbold CJ., Van Nevel CJ., Demeyer DI., 1997. Manipulation of ruminal fermentation. In: Hobson PN, Stewart CS. Editors. The Rumen Microbial Ecosystem. Second Edition. London, Blackie Academic & Professional, 523–632.
  • Nagaraja TG., Titgemeyer EC., 2007. Ruminal asidosis in beef cattle: The current microbiological and nutritional Outlook. J. Dairy Sci., 90, E17- E18.
  • Nocek JE., 1997. Bovine acidosis: Implications on laminitis. J. Dairy. Sci., 80,1005–1028.
  • Ohene-Adjei S., Teather RM., Ivan M., Forster RJ., 2007. Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen. Appl. Environ. Microbiol., 73, 4609–4618.
  • O'Herrin SM., Kenealy WR., 1993. Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens. Appl. Environ. Microbiol., 59, 748-755.
  • Orskov ER., 1992. Protein Nutrition in Ruminants. 2nd Edition. Academic Press. London and New York, 175-188.
  • Özsan E., Aydın R., Ekinci MS., 2004. Rumen mikroorganizmaları ve fonksiyonları. 4. Ulusal Zootekni Bilim Kongresi, 01.09.2004. http://4uzbk.sdu.edu.tr/4UZBK/POSTER/HBP/4UZBKP_047.pdf, 2004.
  • Patterson JA., 1992. Rumen Microbiology. Editor-in-Chief Lederberg, J. Encyclopedia of Microbiology. Academic press. Inc. Harcourt Brace Jovanovich Publishers. New York, 3, 623-542.
  • Piknova M., Filova M., Javorsky P., Pristas P., 2004. Different restriction and modification phenotypes in ruminal lactate-utilizing bacteria. FEMS Microbiol. Let., 236, 91–95.
  • Piknova M., Javorsky P., Guczynska W., Kasperowicz A., Michalowski T., Pristas P., 2006. New species of rumen Treponemes. Folia Microbiol., 51 (4): 303-305.
  • Quwerkerk D., Klieve AV., Forster RJ., 2002. Enumeration of Megasphaera elsdenii in rumen contents by real-time taq nuclease assay. J. Appl. Microbiol., 92, 753–758.
  • Rincon MT., Ding SY., McCrae SI., Martin JC., Aurilia V., Lamed R., Shoham Y., Bayer EA., Flint HJ., 2003. Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J Bacteriol, 185 (3): 703–713.
  • Russell JB., 1985. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl. Environ. Microbiol., 49, 572-576.
  • Russell JB., Rychlik JL., 2001. Factors that alter rumen microbial ecology. Sci, 292, 1119 – 1122.
  • Sales M., Lucas F., Blanchart G., 2000. Effects of ammonia and amino acids on the growth and proteolytic activity of three species of rumen bacteria: Prevotella albensis, Butyrivibrio fibrisolvens, and Streptococcus bovis. Curr. Microbiol., 40, 380–386.
  • Sawanon S., Kobayashi Y., 2006. Synergistic fibrolysis in the rumen by cellulolytic Ruminococcus flavefaciens and non-cellulolytic Selenomonas ruminantium: Evidence in defined cultures. J. Anim. Sci., 77, 208–214.
  • Schwarz WH., 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol., 56, 634–649.
  • Shi Y., Odt CL., Weimer PJ., 1997. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl. Environ. Microbiol., 63. 734–742.
  • Sleat R., Mah RA., and Robinson R., 1984. Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl. Environ. Microbiol., 48, 88-93.
  • Stainer RY., Adelberg E., Ingraham, J., 1984. General Microbiol, 778-781.
  • Stewart CS., Flint HJ., Bryant MP., 1997. The rumen bacteria. In: Hobson PN, Stewart CS. Editors. The Rumen Microbial Ecosystem. Second Edition. London, Blackie Academic & Professional, 10–55.
  • Strömpl C., Tindall BJ., Jarvis GN., Lünsdorf H., Moore ERB., Hippe H., 1999. A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov. Int. J. Syst. Bacteriol., 49, 1861–1872.
  • Tajima K., Aminov RI., Nagamine T., Matsui H., Nakamura M., Benno Y., 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol., 67, 2766–2774.
  • Tanner RS., Wolfe RS., 1988. Nutritional requirements of Methanomicrobium mobile. Appl. Environ. Microbiol., 54, 625-628.
  • Theodorou MK., France J., 2006. Rumen microorganisms and their interactions. In: Dijkstra J, Forbes JM, France J. Ed: Quantitative Aspects of Ruminant Digestion and Metabolism. Second Edition. CABI Publishing,207–228.
  • Trovatelli LD., Matteuzzi D., 1976. Presence of bifidobacteria in the rumen of calves fed different rations. Appl. Environ. Microbiol., 32, 470–473.
  • Toyoda A., Yoda K., Nakamura Y., Minato H., 2001. Presence of several cellulose-binding proteins in culture supernatant and cell lysate of Eubacterium cellulosolvens. J. Gen. Appl. Microbiol., 47, 321–328.
  • Varel VH., Richardson AJ., Stewart CS., 1989. Degradation of barley straw, ryegrass, and alfalfa cell walls by Clostridium longisporum and Ruminococcus albus. Appl. Environ. Microbiol., 55, 3080-3084.
  • Varel VH., Yen JT., Kreikemeier KK., 1995. Addition of cellulolytic Clostridia to the bovine rumen and pig intestinal tract. Appl. Environ. Microbiol., 61, 1116–1119.
  • Wallace RJ., McKain N., 1989. Analysis of peptide metabolism by ruminal microorganisms. Appl. Environ. Microbiol., 55, 2372–2376.
  • Wang H., McKain N., Walker ND., Wallace RJ., 2004. Influence of dipeptidyl peptidase ınhibitors on growth, peptidase activity, and ammonia production by ruminal microorganisms. Curr. Microbiol, 49, 115–122.
  • Wolin MJ., Miller TL., Stewart CS., 1997. Microbe-microbe interactions. In: Hobson PN, Stewart CS. Editors. The Rumen Microbial Ecosystem. Second Edition. London, Blackie Academic & Professional, 467–491.
  • Wright AG., Williams AJ., Winder B., Christophersen CT., Rodgers SL., Smith KD., 2004. Molecular Diversity of rumen methanogens from sheep in Western Australia. Appl. Environ. Microbiol., 70, 1263–1270.
  • Yanagita K., Kamagata G., Kawaharasaki M., Suzuki T., Nakamura Y., Minato H., 2000. Phylogenetic analysis of methanogens in sheep rumen ecosysyem and detection of methano-microbium mobile by flourescence in situ hybridization. Biosci. Biotechiol. Biochem., 64, 1737-1742.
  • Yoshii T., Asanuma N., Hino T., 2003. Number of nitrate- and nitrite-reducing Selenomonas ruminantium in the rumen, and possible factors affecting its growth. J. Anim. Sci., 74,483–491.
  • Zhang Y., Gao W., Meng Q., 2007. Fermentation of plant cell walls by ruminal bacteria, protozoa and fungi and their interaction with fibre particle size. Arch. Anim. Nutr., 61, 114 – 125.
Atatürk Üniversitesi Veteriner Bilimleri Dergisi-Cover
  • ISSN: 1306-6137
  • Yayın Aralığı: Yılda 3 Sayı
  • Yayıncı: Atatürk Üniversitesi Veteriner Fakültesi
Sayıdaki Diğer Makaleler

Kazlarda Nigella Sativa (Çörek Otu) Tohumu Uygulamasının Plazma Nitrik Oksit, Malondialdehit ve Tam Kan Glutatyon Düzeyleri Üzerine Etkisi

Kürşad YAPAR, Mahmut KARAPEHLİVAN, Asım KART, Hilmi YAMAN, Emine ATAKİŞİ

Erzurum ve Çevresinden Kliniğe Getirilen Sahipli Köpeklerin Parvoviral Enteritisini Etkileyen Risk Faktörleri Üzerinde Bir Araştırma

Akın KIRBAŞ, Mustafa Sinan AKTAŞ, Yunusemre ÖZKANLAR

Korunmuş Yağların Hayvan Beslemede Kullanımı

Tugay AYAŞAN, Emel KARAKOZAK

Alkyd Resin Kullanılarak Yerli Ördeklerin Cloaca’sı Üzerine Macroanatomik ve Subgross Bir Çalışma

Selim ÇINAROĞLU, Şamil SEFERGİL, Zafer SOYGÜDER, Hasan ARI Hüseyin

Kangal Köpegi Yavrularında Vücut Ağırlıgı Değişimlerinin Tanımlanmasında Doğrusal Olmayan Büyümü Modellerinin Kullanılması

Ömer ÇOBAN, Fatih YILDIRIM, Ahmet YILDIZ, Nilüfer SABUNCUOĞLU, Ekrem LAÇİN

Afyon Yöresinde Yetiştirilen Toprak Yiyen Buzağılarda Kalsiyum, Fosfor, Magnezyum, Bakır, Çinko ve Demir Düzeyleri

Aslan KALINBACAK, İsmail AYTEKİN

Aşım Sezonunda Farklı Irk Koyunlarda Flugeston Asetat-eCG ile Östrus Senkronizasyonu Sonrası Bazı Reprodüktif Özellikler

Muharrem Taşkın DALCI, Recai KULAKSIZ, Ali DAŞKIN

Rumenin Mikrobiyel Ekosistemindeki Bakteriler ve Rolleri

Huzur Derya UMUCALILAR, Mustafa Selcuk ALATAŞ

Bir Köpekte Bulaşıcı Venereal Tümör Meme Metastazının İnce İğne Aspirasyonu ile Sitolojik Teşhisi ve Vincristine Sülfat ile Tedavisi

Mehmet CENGİZ, Ertan ORUÇ, Bülent POLAT, Yavuz Selim SAĞLAM

Kars İlindeki Süt Üreticilerinin Bazı Teknik Bilgi Düzeylerinin Araştırılması

Pınar DEMİR