Siklik Polialkoller: İnositol, Quersitol, Konduritol, Karba-Şeker ve Gabosin

Literatürde tüm siklik alkolleri belirtmek için genel olarak siklitol adı kullanılmaktadır. Böylece siklitoller yapısında birden fazla hidroksi grubu bulunan siklik yapıdaki bileşikler olarak tanımlanmışlardır. Siklitollerin kanser, ülser ve kırıkların tedavisinde kullanılması ve türevlerinin ise antilösemik, antitümör ve enzim inhibitörü olarak biyolojik aktivite göstermesi bu bileşiklerin steteospesifik ve kısa yoldan sentezinin önemini artırmıştır. Bu incelemede temel siklitoller olarak belirtilen altı halkalı siklitoller inositol, quersitol, konduritol, karba-şeker ve gabosinler hakkında genel bilgi verilmiştir.

___

  • [1] (a) W. Pigman; D. Horton, “The Carbohydrates Chemistry and Biochemistry” 519-579, Academic: New York, NY, (1972); (b) D. C. Billington, “Recent developments in the synthesis of myo-inositol phosphates” Chem. Soc. Rev. (1989), 18, 83-122; (c) G. Legler, Adv. Carbohydr. Chem. Biochem. (1990), 48, 319-384; (d) T. Hudlicky, D. A. Entwistle, K. K. Pitzer, A. J. Thorpe, Chem. Rev. (1996), 96, 1195-1220; (e) M. T. Rudolf; W. H. Li, N. Wolfson, A. E. Traynor-Kaplan, C. J. Schultz, “2-Deoxy Derivative Is a Partial Agonist of the Intracellular Messenger Inositol 3,4,5,6-Tetrakisphosphate in the Epithelial Cell Line T84” Med. Chem. (1998), 41, 3635-3644; (f) G. F. Busscher, F. P. J. T. Rutjes, F. L. van Delft, “2-Deoxystreptamine: Central Scaffold of Aminoglycoside Antibiotics” Chem. Rev. (2005), 105, 775-791; (g) O. Arjona, A. M. Gomez, J. C. Lopez, J. Plumet, Chem. Rev. (2007), 107, 1919-2036; (h) G. P. Moss, P. A. S. Smith, D. Tavernier, Pure App. Chem., l. (1995) 67, 1307-1375.
  • [2] (a) K. Tatsuta, T. Tsuchiya, N. Mikami, S. Umezawa, H. Umezawa, H. Naganawa, “KD 16-U1, a new metabolite of Streptomyces: isolation and structural studies”, J. Antibiot. (1974), 27, 579-86; (b) G. Bach, M. S. Breiding, S. Grabley, P. Hammann, K. Hutter, R. Thiericke, H. Uhr, J. Wink, A. Zeeck, “Secondary metabolites by chemical screening 22. Gabosines, new carbasugars from Streptomyces”, Liebig. Ann. Chem. (1993), 3, 241-50; (c) Y. Q. Tang, C. Maul, R. Hofs, I. Sattler, S. Gabley, X-Z. Feng, A. Zeeck, R. Thiericke, “Gabosines L, N and O: New Carba-Sugars from Streptomyces with DNA-Binding Properties”, Eur. J. Org. Chem. (2000), 1, 149-53.
  • [3] K. Tatsuta, (1998) “Carbohydrate Mimics: Concepts & Methods Chepleur”, Y. Ed. Wiley-VCH: Weinheim, 283-305.
  • [4] (a)T.H. Posternak, The Cyclitols, 284. Holden-Day, Inc., San Francisco, California, (1965); (b)J.R. Thomas, R.A. Dwek, T.W. Rademacher, Biochemistry (1990), 29, 5413-5422; (c)A. Varki, Glycobiology (1993), 3, 97-130; (d)A. Dwek, Chem. Rev. (1996), 96, 683-720; (e)K. Hinchliffe, R. Irvine,, Nature (1997), 390, 123-124; (f)S. Ogawa, In Carbohydrate Mimics: Concept and Methods; Chapleur, Y., Ed.; Wiley-VCH: Weinheim, Germany, (1998); p 87; (g)C. Schultz, M.T.Rudolf, H.H.Gillandt, A.E.Traynor-Kaplan, K.S. Bruzik, Ed.; Am. Chem. Soc. Symp. Ser.; (1999); 718, 232-243; (h)T. D. Heightman, A.T.Vasella, Angew. Chem., Int. Ed. (1999), 38, 750-770; (i)N. Asano, Glycobiology (2003), 13, 93R-104R; (j)R.F.Irvine, Nat. Rev. Mol. Cell Biol. (2003), 4, 586-590; (k) Z. Guo, L. Bishop, Eur. J. Org. Chem. (2004), 3585-3596; (l)R.H. Michell, Biochem. Soc. Symp. (2007), 74, 223-246; (m)J.D. York, D.J. Lew, Nat. Chem. Biol. (2008), 4, 16-17; (n)E.J. Chenette, Nat. Rev. Mol. Cell Biol. 2009, 10, 238-239
  • [5] G, E. McCasland, S. Furuta, F. L. Johnson, N. J. Shoolery, “Synthesis of Two New Quercitol (Deoxyinositol) Stereoisomers. Nuclear Magnetic Resonance and Optical Rotatory Configurational Proofs”, J. Am. Chem. Soc., (1961), 83, 2335.
  • [6] V. Plouvier, “Sur la recherché des itols a chaine droite et des cyclitols chez les vegetaux-Relations entre leur repartition et la classification systematique Bull. Soc. Chim. Biol. (1963), 11, 1079−1118.
  • [7] H. Müller, “CLXV-The occurrence of quercitol (quercite) in the leaves of Chamaerops humilis” J. Chem. Soc., Trans. (1907), 91, 1766-1767.
  • [8] J. Ewing, G. K. Hughes, E. Ritchie, “A new source of L-quercitol (viburnitol)”. Aust. J. Chem. (1950), 3, 514-516.
  • [9] C. R. Mitra, G. Misra, “Mimusops hexandra-I. Constituents of fruit and seed” Phytochemistry (1965), 4, 345-348.
  • [10] G. Misra, C. R. Mitra, “Mimusops hexandra-III. Constituents of root, leaves and mesocarp” Phytochemistry (1968), 7, 2173-2176.
  • [11] E. J. Bourne, E. Percival, B. Smestad, “Carbohydrates of Acetabularia species. Part I,” Carbohydr. Res. (1972), 22, 75-82.
  • [12] S. Dasgupta, A. B. Ray, S. K. Bhattacharya, R. Bose, “Constituents of Pachygone ovata and pharmacological action of its major leaf alkaloid,” J. Nat. Prod. (1979), 42, 399-406.
  • [13] A. Merchant, M. Tausz, S. K. Arndt, M. A. Adams, “Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit,” Plant, Cell Environ. (2006), 29, 2017-2029.
  • [14] J. A. P. Passarinho, P. Lamosa, J. P. Baeta, H. Santos, C. P. P Ricardo, “ Annual changes in the concentration of minerals and organic compounds of Quercus suber leaves,” Physiol. Plant. (2006), 127, 100-110.
  • [15] S. Rodríguez-Sánchez, A. I. Ruiz-Matute, M. E. Alañón, M. S. Pérez-Coello, L. F. de Julio-Torres, R. Morales, I. Martínez-Castro, “Analysis of cyclitols in different Quercus species by gas chromatography-mass spectrometry,” J. Sci. Food Agric. (2010), 90, 1735-1738.
  • [16] M. E. Alañón, M. C. Díaz-Maroto, I. J. Díaz-Maroto, P. Vila-Lameiro, M. S. Pérez-Coello, “Cyclic polyalcohols: Fingerprints to identify the botanical origin of natural woods used in wine aging,” J. Agric. Food Chem. (2011), 59, 1269-1274.
  • [17] A. Merchant, P. Y. Ladiges, M. A. Adams, “Quercitol links the physiology, taxonomy and evolution of 279 eucalypt species,” Glob. Ecol. Biogeogr. (2007), 16, 810-819.
  • [18] N. Spieß, M. Oufir, I. Matušíková, M. Stierschneider, D. Kopecky, A. Homolka, K. Burg, S. Fluch, J. F. Hausman, E. Wilhelm, E. “Ecophysiological and transcriptomic responses of oak (Quercus robur) to long-term drought exposure and rewatering,” Environ. Exp. Bot. (2012), 77, 117-126.
  • [19] J. Sardans, A. Gargallo-Garriga, M. Pérez-Trujillo, T. J. Parella, R. Seco, I. Filella, “Peñuelas, J. Metabolic responses of Quercus ilex seedlings to wounding analysed with nuclear magnetic resonance profiling. Plant Biol. (2014), 16, 395-403.
  • [20] M. L. Sanz, M. Gonzalez, C. de Lorenzo, J. Sanz, I. Martínez-Castro, “A contribution to the differentiation between nectar honey and honeydew honey,” Food Chem. (2005), 91, 313-317.
  • [21] A. Berecibar, C. Grandjean, A. Sinwardena, “ Synthesis and Biological Activity of Natural Aminocyclopentitol Glycosidase Inhibitors: Mannostatins, Trehazolin, Allosamidins, and Their Analogs,” Chem. Rev., (1999), 99, 779-844.
  • [22] E. Borges de Melo, A. da Silveira Gomes, I. Carvalho, “α- and β-Glucosidase inhibitors: Chemical structure and biological activity,” Tetrahedron (2006), 62, 10277-10302.
  • [23] a) L. Anderson. In The Carbohydrates, Chemistry and Biochemistry; Pigman, W.; Horton, D., Eds.; Academic Press: New York, (1972); Vol. IA, pp 519-579; b) G. E. McCasland, “Chemical and physical studies of cyclitols containing four or five hydroxyl groups,” Adv. Carbohyd. Chem., (1965),20, 11. c) G. E. McCasland, M. O. Naumann, L. J. Durham, “Alicyclic carbohydrates. XXXV. The synthesis of proto-quercitol. 220-MHz proton spectrum with the superconducting solenoid,” J Org. Chem. (1968), 33,4220-4227; d) G. E. McCasland, S. Furuta, L. F. Johnson, J. N. Shoolery, “Synthesis of Two New Quercitol (Deoxyinositol) Stereoisomers. Nuclear Magnetic Resonance and Optical Rotatory Configurational Proofs,” J. Am. Chem. Soc., (1961), 83, 2335-2343.
  • [24] (a) A. Merchant, S. K. Arndt, A. Callister, M. A. Adams, “Quercitol plays a key role in stress tolerance of Eucalyptus leptophylla (F. Muell) in naturally occurring saline conditions”, Environ. Exp. Bot., (2009), 65, 296; (b) S. K. Arndt, S. J. Livesley, A. Merchant, T. M. Bleby and P. F. Grierson, “Quercitol and osmotic adaptation of field‐grown Eucalyptus under seasonal drought stress”, Plant Cell. Environ., (2008), 31, 915.
  • [25] M. S. Gultekin, E. Salamci, M. Balci, “A novel and short synthesis of (1,4/2)-cyclohex-5-ene-triol and its conversion to (±)-proto-quercitol”, Carbohyd. Res. (2003), 338, 1615-1619.
  • [26] IUPAC Commission on the Nomenclature of Organic Chemistry and IUPAC-IUB Commission on Biochemical Nomenclature. Nomenclature of Cyclitols. Recommendations. Pure Appl. Chem. (1974), 37, 285.
  • [27] K. Kubler, “Beiträge zur Chemie der Kondurangorinde”, Arch. Pharm. (1908), 246, 620–660.
  • [28] G. Dangschat, H. O. L. Fisher, “Über die Konstitution des Condurits und über einige Cyclohexantetrole”, Naturwissenschaften (1939), 27, 756-757.
  • [29] W. Kern, W. Frike, H. Steger, “Die Inhaltsstoffe der Kondurangorinde. III” Arch. Pharm. (1940), 278, 145-156.
  • [30] (a) M. Balci, Y. Sütbeyaz, H. Seçen, “Conduritols and related compounds”, Tetrahedron (1990), 46, 3715-3742.; (b) H. A. J. Carless, “The use of cyclohexa-3,5-diene-1,2-diols in enantiospecific synthesis”, Tetrahedron: Asymmetry (1992), 3, 795-826.; (c) T. Hudlicky, M. Cebulak, Cyclitols and Their Derivatives. A Handbook of Physical, Spectral and Synthetic Data; VCH: New York, (1993); (d) T. Hudlicky, J. W. Reed, Advances In Asymmetric Synthesis; JAI: London, (1995); 1, 271; (e) M. Balci, “Synthesis of conduritols and related compounds”, Pure Appl. Chem. (1997), 69, 97-104.
  • [31] K. R. Shanmugasundaram, C. Panneerselvam, P. Samudram, E. R. B. Shanmugasundaram, “Enzyme changes and glucose utilisation in diabetic rabbits: the effect of Gymnema sylvestre, R.Br.”, J. Ethnopharmacol. (1983), 7, 205-234.
  • [32] (a) M. S. Gultekin, M. Celik, M. Balci, “Cyclitols: conduritols and related compounds”, Curr. Org. Chem. (2004), 8, 1159-1186; (b) Kwon, Y.-U.; Chung, S.-K. “Facile synthetic routes to all possible enantiomeric pairs of conduritol stereoisomers via efficient enzymatic resolution of conduritol B and C derivatives”, Org. Lett. (2001), 3, 3013-3016.
  • [33] A. Patti, C. Sanflippo, M. Piattelli, G. Nicolosi, “Enantioselective Synthesis of (−)- and (+)-Conduritol F via Enzymatic Asymmetrization of cis-Cyclohexa-3,5-diene-1,2-diol”, J. Org. Chem., (1996), 61, 6458-6461.
  • [34] K. Miyatake, S. Takenaka, T. Fujimoto, G. Kensho, S. Upadhaya, M. Kirihata, I. Ichimoto, Y. Nakano, “Isolation of conduritol A from Gymnema Sylvester and its effects of against intestinal glucose absorption in rats,” Biosci., Biotech., Biochem. (1993); 57: 2184-2185.
  • [35] G. E. McCasland, S. Furuta, L. J. Durham, “Alicyclic carbohydrates. XXIX. 1,2 The synthesis of a pseudo-hexose (2,3,4,5-tetrahydroxycyclohexanemethanol),” J. Org. Chem. (1966) 31:1516-1521.
  • [36] G. E. McCasland, S. Furuta, L. J. Durham, “Alicyclic carbohydrates. 33. Epimerization of pseudo-DL-alpha-DL-talopyranose to pseudo-alpha-DL-galactopyranose Proton magnetic resonance studies,” J. Org. Chem., (1968), 33, 2841-2844.
  • [37] A. Zorin, L. Klenk, T. Mack, H. P. Deigner, M. S. Schmid, “Current Synthetic Approaches to the Synthesis of Carbasugars from Non Carbohydrate Sources,” Top. Curr. Chem. (2022), 380:12.
  • [38] T. W. Miller, B. H. Arison, G. Albers-Schonberg “Isolation of a cyclitol antibiotic: 2,3,4,5-tetrahydroxycyclohexanemethanol,” Biotechnol. Bioeng. (1973) 15:1075-1080.
  • [39] O. Arjona, A. M. Gómez, J. C. López, P. Joaquín “Synthesis and conformational and biological aspects of carbasugars,” Chem Rev. (2007) 107:1919-2036.
  • [40] S. Roscales, J. Plumet “Biosynthesis and biological activity of carbasugars,” Int J. Carbohydr. Chem. (2016) 1-42.
  • [41] P. Awolade, N. Cele, N. Kerru, L. Gummidi, E. Oluwakemi, P. Singh, “Therapeutic signifcance of β-glucuronidase activity and its inhibitors: a review,” Eur. J. Med. Chem. (2020), 187:1119–1121.
  • [42] R. Lahiri, A. A. Ansari, Y. D. Vankar “Recent developments in design and synthesis of bicyclic azasugars, carbasugars and related molecules as glycosidase inhibitors,” Chem. Soc. Rev. (2013) 42, 5102-5118.
  • [43] T. Leermann, O. Block, M. A. L. Podeschwa, U. Pfüllerd, H. J. Altenbacha, “De novo synthesis and lectin binding studies of unsaturated carba-pyranoses,” Org. Biomol. Chem. (2010) 8, 3965-3974.
  • [44] T. W. Miller, B. H. Arison, G. Albers-Schonberg, "Isolation of a cyclitol antibiotic: 2, 3, 4, 5‐tetrahydroxycyclohexanemethanol." Biotechnol. Bioeng. (1973), 15, 1075-1080.
  • [45] (a) M. Adinolfi, M. M. Corsaro, C. De Castro, A. Evidente, R. Lanzetta, A. Molinaro, M. Parrilli, "Caryose: a carbocyclic monosaccharide from Pseudomonas caryophylli." Carbohydr. Res. (1996), 284, 111-118. (b) M. Adinolfi, M. M. Corsaro, C. DeCastro, A. Evidente, R. Lanzetta, P. Lavermicocca, M. Parrilli, “Analysis of the polysaccharide components of the lipopolysaccharide fraction of Pseudomonas caryophylli.” Carbohydr. Res. (1996), 284, 119-133.
  • [46] (a) M. De Rosa, S. De Rosa, A. Gambacorta, “13C-NMR assignments and biosynthetic data for the ether lipids of Caldariella.” Phytochemistry (1977), 16, 1909. (b) M. De Rosa, S. De Rosa, A. Gambacorta, L. Mincle, J. D. Bullock, “Chemical structure of the ether lipids of thermophilic acidophilic bacteria of the Caldariella group.” Phytochemistry (1977), 16, 1961. (c) Y. Bleriot, E. Untersteller, B. Fritz, P. Sinay, “Total synthesis of calditol: structural clarification of this typical component of Archaea order Sulfolobales.” Chem. Eur. J. (2002), 8, 240-246.
  • [47] (a) J. Marco-Contelles, M. T. Molina, S. Anjum, “Naturally occurring cyclohexane epoxides: sources, biological activities, and synthesis.” Chem. Rev. (2004), 104, 2857-2900. (b) C. Thebtaranonth, Y. Thebtaranonth, Y. “Naturally occurring cyclohexene oxides” Acc. Chem. Res. (1986), 19, 84-90.
  • [48] J. Marco-Contelles, “Cyclohexane Epoxides− Chemistry and Biochemistry of (+)‐Cyclophellitol.” Eur. J. Org. Chem. (2001), 1607-1618.
  • [49] (a) S. Atsumi, K. Umezawa, H. Iinuma, H. Naganawa, H. Nakamura, Y. Iitaka, T. Takeuchi, “Production, isolation and structure determination of a novel β-glucosidase inhibitor, cyclophellitol, from Phellinus sp” J. Antibiot. (1990), 43, 49-53. (b) K. Tatsuta, ““Total synthesis and chemical design of useful glycosidase inhibitors.” Pure Appl. Chem. (1996), 68, 1341-1346.
  • [50] (a) Y. Nobuji, C. Noriko, M. Takashi, U. Shigeru, A. Kenzon, I. Michaki, Jpn. Kokai Tokkyo Koho, JP, 06306000, (1994). See also: (b) N. Yoshikawa, N. Chiba, T. Mikawa, S. Ueno, K. Harimaya, M. Iwata, Chem. Abstr. (1995), 122, 185533e.
  • [51] (a) Y. Kameda, S. J. Horii, “The unsaturated cyclitol part of the new antibiotics, the validamycins.” Chem. Soc., Chem. Commun. (1972), 746-747. (b) Y. Kameda, S. Horii, “Microbial transformation of validamycins.” J. Antibiot. (1975), 28, 298-306.
  • [52] (a)Y. Kameda, N. Asano, M. Teranishi, K. Matsui, “New Cyclıtols, Degradatıon Of Valıdamycın A By Flavobacterıum Saccharophıl Um.” J. Antibiot. (1980), 33, 1573-1574. (b) Y. Kameda, N. Asano, M. Teranishi, M. Yoshikawa, K. Matsui, “New intermediates, degradation of validamycin A by Flavobacterium saccharophilum.” J. Antibiot. (1981), 34, 1237-1240. (c) N. Asano, M. Takeuchi, K. Ninomiya, Y. Kameda, K. Matsui, “Microbial degradation of validamycin A by Flavobacterium saccharophilum Enzymatic cleavage of CN linkage in validoxylamine” J. Antibiot. (1984), 37, 859-867.
  • [53] (a) S. Ogawa, Y. Miyamoto, A. Nakajima, “Microbial degradation of validamycin A by Flavobacterium saccharophilum Enzymatic cleavage of CN linkage in validoxylamine A. “Chem. Lett. (1989), 725-867; (b) S. Ogawa, A. Nakajima, Y. Miyamoto, “Cleavage of validoxylamine A derivatives with N-bromosuccinimide: preparation of blocked synthons useful for the construction of carba-oligosaccharides composed of imino linkages.” J. Chem. Soc. Perkin Trans. 1, (1991), 3287-3290.
  • [54] S. Horii, T. Iwasa, Y. Kameda, “Studıes On Valıdamycıns, New Antıbıotıcs. V Degradatıon Studıes.” J. Antibiot. (1971), 24, 57-58.
  • [55] Y. Kameda, N. Asano, M. Yoshikawa, M.; Takeuchi, K. Yamaguchi, K. Matsui, S. Horii, H. Fukase, “Vaholamıne, A New Α-Glucosıdase Inhıbıtıng Amınocyclıtol Produced By Streptomyces Hygroscopıcus.” J. Antibiot. (1984), 37, 1301-1307.
  • [56] S. Ogawa, “Synthetic studies on pseudo-sugars” Journal of Synthetic Organic Chemistry, Japan, (1985), 43(1), 26-39.
  • [57] a) T. Tschuyia, M. Mikami, H. Umezawa, H. Naganawa, “KD16-U1, a new metabolite of Streptomyces: Isolation and structural studies.” J. Antibiot. (1974), 27, 579-586; b) T. Takeuchi, H. Chimura, M. Hamada, H. Umezawa, H. Yoshka, N. Oguchi, Y. Takahashi, A. Matsuda, “A glyoxalase I inhibitor of a new structural type produced by Streptomyces.” J. Antibiot. (1975), 28, 737-742; c) A. Müller, W. Keller-Schierlein, J. Bielicki, G. Rak, J. Stümpfel, H. Zähner, “Stoffwechselprodukte von Mikroorganismen. 237. Mitteilung.(2S, 3R, 4R, 6R)‐2, 3, 4‐Trihydroxy‐6‐methylcyclohexanon aus zwei Actinomyceten‐Stämmen.” Helv. Chim. Acta (1986), 69, 1829-1832.
  • [58] G. Bach, S. Breiding-Mack, S. Grabley, P. Hammam, K. Hütter, R. Thiericke, H. Uhr, J. Wink, A. Zeeck, “Secondary Metabolites by Chemical Screening, 22. Gabosines, New Carba‐sugars From Streptomyces.” Liebigs Ann. Chem. (1993), 241-250.
  • [59] a) P. Vogel, “Monosaccharide and disaccharide mimics: new molecular tools for biology and medicine.” Chimia (2001), 55, 359-365; b) O. Arjona, A. M. Gomez, J. C. Lopez, “Synthesis and conformational and biological aspects of carbasugars.” Chem. Rev. (2007), 107, 1919-