Bazı fenolik bileşiklerle glutatyon s-transferaz ve glutatyon redüktaz inhibisyonu: in vitro ve in silico analiz

Glutatyon S-transferazlar (GSTs) ve Glutatyon redüktaz (GR) aktivitelerinin kanser hücresinde arttığı ve çoklu ilaç direncine (MDR) sebep olarak kanserin ilerlemesine katkıda bulunduğu belirlenmiştir. Glutatyon redüktaz okside glutatyon (GSSG) ile indirgenmiş nikotinamid adenin dinükleotid fosfat (NADPH) arasında elektron transferini katalize eder. Bu reaksiyon sonucu oluşan redükte glutatyon (GSH) GSTs katalizliğinde çeşitli ksenobiyotiklerin elektrofilik merkezine saldırarak detoksifiye eder. Kanser hücrelerinde antikanser ilaçların artan GST ve GR ekspresyonu ile detoksifikasyonu bu ilaçların etkinliğini azaltır. Bu nedenle kanser tedavilerinde GST ve GR inhibisyonu önemli bir yaklaşımdır. Bu çalışmada, insan eritrositlerinden GR izolasyonu 2',5'-ADP Sepharose 4B afinite kromatografisi yöntemiyle 16,912 EÜ/mg protein spesifik aktiviteyle, GST izolasyonu ise Glutatyon Agaroz afinite kromatografisi yöntemiyle 4,88 EÜ/mg protein spesifik aktiviteyle gerçekleştirilmiştir. Enzimlerin izolasyonundan sonra vanilin, epikatekin ve katekinin aktiviteler üzerine inhibisyon etkisi incelenmiştir. Her üç madde de GST’yi inhibe etmezken, vanilin ve epikatekinin GR’yi sırasıyla 86.25 µM ve 345 µM IC50 değerleriyle inhibe ettiği belirlenmiştir. İnhibisyon mekanizmasının aydınlatılması ise AutoDock programı kullanılarak moleküler yerleştirme çalışmaları ile gerçekleştirilmiştir.

Some phenolic compounds as inhibitors of glutathione s-transferase and glutathione reductase: an in vitro and in silico analysis

It has been determined that Glutathione S-transferases (GSTs) and Glutathione reductase (GR) activities increase in cancer cells and contribute to the progression of cancer by causing multidrug resistance (MDR). Glutathione reductase catalyzes electron transfer between oxidized glutathione (GSSG) and nicotinamide adenine dinucleotide phosphate, reduced form, (NADPH). The reduced glutathione (GSH) formed as a result of this reaction detoxifies various xenobiotics by attacking the electrophilic center in the catalysis of GSTs. Detoxification of anticancer drugs with increased expression of GST and GR in cancer cells reduces the effectiveness of these drugs. Therefore, GST and GR inhibition is an important approach in cancer treatments. In this study, from human erythrocytes, GR was isolated by using 2',5'-ADP Sepharose 4B affinity chromatography method with 16.912 EU/mg protein specific activity, and GST was isolated by using Glutathione Agarose affinity chromatography method with 4.88 EU/mg protein specific activity. After the isolation of the enzymes, the inhibition effects of vanillin, epicatechin, and catechin on the activities were investigated. While all three substances did not inhibit GST, vanillin and epicatechin were found to inhibit GR with IC50 values of 86.25 μM and 345 μM, respectively. The elucidation of the inhibition mechanism was carried out by molecular docking studies using the AutoDock program.

___

  • [1] Hayes, J. D., and Strange, R. C., “Glutathione S-transferase polymorphisms and their biological consequences”, Pharmacology, (2000), 61(3), 154-166.
  • [2] Mannervik, B., and Danielson, U. H., “Glutathione transferases–structure and catalytic activity” CRC critical reviews in biochemistry, (1988), 23(3), 283-337.
  • [3] Townsend, D. M., Tew, K. D., and Tapiero, H., “The importance of glutathione in human disease” Biomedicine and pharmacotherapy, (2003), 57(3-4), 145-155.
  • [4] Armstrong, R. N. “Structure, catalytic mechanism, and evolution of the glutathione transferases”, Chemical research in toxicology, (1997), 10(1), 2-18.
  • [5] Hayes, J. D., Flanagan, J. U., and Jowsey, I. R., “Glutathione transferases. Annual review of pharmacology and toxicology”, (2005), 45, 51-88.
  • [6] Lu, S. C., “Glutathione synthesis”. Biochimica et Biophysica Acta (BBA)-General Subjects, (2013), 1830(5), 3143-3153.
  • [7] Meister, A., Anderson, M. E., and Hwang, O., Intracellular cysteine and glutathione delivery systems”, The Journal of biological chemistry, (1983), 258(23), 13955-13960.
  • [8] Korkmaz, I. N., Güller, U., Kalın, R., Özdemir, H., and Küfrevioğlu, Ö. İ., “Structure‐Activity Relationship of Methyl 4‐Aminobenzoate Derivatives as Being Drug Candidate Targeting Glutathione Related Enzymes: in Vitro and in Silico Approaches”, Chemistry and Biodiversity, (2023), e202201220.
  • [9] Demir, Y., Türkeş, C., Küfrevioğlu, Ö.İ., Beydemir, Ş., “Molecular Docking Studies and the Effect of Fluorophenylthiourea Derivatives on Glutathione‐Dependent Enzymes”, Chemistry and Biodiversity, (2022), e202200656. [10] Townsend, D. M., and Tew, K. D., “The role of glutathione-S-transferase in anti-cancer drug resistance”, Oncogene, (2003), 22(47), 7369-7375.
  • [11] Xu, D.P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J.J., and Li, H.B., “Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources”, International Journal of Molecular Sciences, (2017), 18(1), 96.
  • [12] Habig, W.H., Pabst, M.J., Jakoby, W.B., “Glutathione S-Transferases”, Journal of Biological Chemistry, (1974), 249: 7130–7139.
  • [13] Güller, U., Taşer, P., Çiftci, M., Küfrevioğlu, Ö. İ., “Purification of Glutathione S-Transferase From Bonito Sarda Sarda Liver And Investigation of Metal Ions Effects on Enzyme Activity”, Hacettepe Journal of Biology and Chemistry, (2014), 42: 435–442.
  • [14] Carlberg, I., Mannervik, B., “Purification and characterization of glutathione reductase from calf liver. An improved procedure for affinity chromatography on 2′,5′-ADP-Sepharose 4B”, Analytical Biochemistry, (1981), 116: 531–536.
  • [15] Taşer, P., Çiftci, M., “Purification and Characterization of Glutathione Reductase from Turkey Liver”, (2012), Turkish Journal of Veterinary & Animal Sciences, 36(5), 546-553. [16] Güller, P., “The In Vitro and In Silico Inhibition Mechanism of Glutathione Reductase by Resorcinol Derivatives: A Molecular Docking Study”, Journal of Molecular Structure, (2021), 1228: 129790.
  • [17] Savvides, S.N., and Karplus, P.A., “Kinetics and Crystallographic Analysis of Human Glutathione Reductase in Complex with a Xanthene Inhibitor”, Journal of Biological Chemistry, (1996), 271: 8101–8107.
  • [18] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J., “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility”, Journal of computational chemistry, (2009), 30(16), 2785-2791.
  • [19] El-Hachem, N., Haibe-Kains, B., Khalil, A., Kobeissy, F. H., & Nemer, G., “AutoDock and AutoDockTools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study”, Neuroproteomics: Methods and Protocols, (2017), 391-403.
  • [20] Dang, D. T., Chen, F., Kohli, M., Rago, C., Cummins, J. M., and Dang, L. H., “Glutathione S-transferase π1 promotes tumorigenicity in HCT116 human colon cancer cells”, Cancer research, (2005), 65(20), 9485-9494.
  • [21] Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., and Hammond, C. L., “Glutathione dysregulation and the etiology and progression of human diseases”, (2009), Biological Chemistry, Vol. 390, pp. 191–214.
  • [22] Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S., and Baradaran, B., “The different mechanisms of cancer drug resistance: a brief review”, Advanced pharmaceutical bulletin, (2017) 7(3), 339.
  • [23] Abotaleb, M., Liskova, A., Kubatka, P., and Büsselberg, D., “Therapeutic potential of plant phenolic acids in the treatment of cancer”, Biomolecules, (2020), 10(2), 221.
  • [24] Song, Y. H., Sun, H., Zhang, A. H., Yan, G. L., Han, Y., and Wang, X. J., “Plant-derived natural products as leads to anti-cancer drugs”, Journal of Medicinal Plant and Herbal Therapy Research, (2014), 2, 6-15.
  • [25] Aydin, T. “In vitro and in silico evaluation of some natural molecules as potent glutathione reductase inhibitors”, International Journal of Secondary Metabolite, (2019), 6(4), 310-316.
  • [26] Güller, P., Karaman, M., Güller, U., Aksoy, M., and Küfrevioğlu, Ö. İ., “A study on the effects of inhibition mechanism of curcumin, quercetin, and resveratrol on human glutathione reductase through in vitro and in silico approaches”, Journal of Biomolecular Structure and Dynamics, (2021), 39(5), 1744-1753.
  • [27] Güller, P., “The in vitro and in silico inhibition mechanism of glutathione reductase by resorcinol derivatives: a molecular docking study”, Journal of Molecular Structure, (2021), 1228, 129790.
  • [28] Appiah-Opong, R., Commandeur, J. N. M., Istyastono, E., Bogaards, J. J., and Vermeulen, N. P. E., “Inhibition of human glutathione S-transferases by curcumin and analogues”, Xenobiotica, (2009), 39(4), 302-311.
  • [29] Van Zandn, J. J., Hamman, O. B., van Iersel, M. L., Boeren, S., Cnubben, N. H., Bello, M. L., Vervoort, J., van Bladeren, P. J., and Rietjens, I. M., “Inhibition of human glutathione S-transferase P1-1 by the flavonoid quercetin”, Chemico-biological interactions, (2003), 145(2), 139-148.