p-Nitroanilinin antikolinerjik etkilerinin belirlenmesi

Kolinesterazlar, doğal olarak oluşan bir nörotransmitter olan, nörotransmitter asetilkolinin (ACh) kolin ve asetik aside parçalanmasını katalize ederek sinir sisteminin düzgün çalışmasına izin verir. İnsan vücudundaki kolinesterazlar iki tiptir: asetilkolinesteraz (AChE; E.C.3.1.1.7) ve butirilkolinesteraz (BChE; E.C.3.1.1.8). Bu çalışmada, p-Nitroanilinin antikolinerjik etkisi deneysel ve teorik olarak araştırılmış ve bir AChE inhibitörü olarak bilinen takrin ile karşılaştırılmıştır. p-Nitroanilin için IC50 değerleri hesaplandı; AChE'ye karşı 17,77 nM, BChE'ye karşı 18,73 nM. Ayrıca Ki değerleri AChE'ye karşı 1,80 ± 0,16 nM, BChE'ye karşı 6,49 ± 1,63 nM olarak bulundu. Docking Score değerleri AChE için -4,631, BChE için -3,779 olarak hesaplandı.

Determination of anticholinergic effects of p-nitroaniline

Abstract Cholinesterases allow the nervous system to function properly by catalyzing the breakdown of the neurotransmitter acetylcholine (ACh), a naturally occurring neurotransmitter, into choline and acetic acid. Cholinesterases in the human body are of two types: acetylcholinesterase (AChE; E.C.3.1.1.7) and butyrylcholinesterase (BChE; E.C.3.1.1.8). In this study, the anticholinergic effect of p-Nitroaniline was investigated experimentally and theoretically and compared with tacrine, which is known as an AChE inhibitor. IC50 values were calculated for p-Nitroaniline; 17.77 nM against AChE, 18.73 nM towards BChE. Also, Ki values was found to be 1.80 ± 0.16 nM against AChE and 6.49 ± 1.63 nM on BChE. Docking Score values were calculated as -4.631 for AChE and -3.779 for BChE.

___

  • [1] Tugrak, M., Gul, H. İ., & Gulcin, İ. “Acetylcholinesterase inhibitory potencies of new pyrazoline derivatives,” Journal of Research in Pharmacy, (2020) 24(4).
  • [2] Gulcin, İ., Petrova, O. V., Taslimi, P., Malysheva, S. F., Schmidt, E. Y., Sobenina, L. N., ... & Sujayev, A. R. “Synthesis, Characterization, Molecular Docking, Acetylcholinesterase and α‐Glycosidase Inhibition Profiles of Nitrogen‐Based Novel Heterocyclic Compounds,” ChemistrySelect, (2022), 7(19), e202200370.
  • [3] Bilginer, S., Gul, H. I., Anil, B., Demir, Y., & Gulcin, I. “Synthesis and in silico studies of triazene‐substituted sulfamerazine derivatives as acetylcholinesterase and carbonic anhydrases inhibitors,” Archiv der Pharmazie, (2021) 354(1), 2000243.
  • [4] Craig, L. A., Hong, N. S., & McDonald, R. J. “Revisiting the cholinergic hypothesis in the development of Alzheimer's disease.” Neuroscience & Biobehavioral Reviews, (2011) 35(6), 1397-1409.
  • [5] Gülçin, İ., Bingöl, Z., Taslimi, P., Gören, A. C., Alwasel, S. H., & Tel, A. Z. “Polyphenol contents, potential antioxidant, anticholinergic and antidiabetic properties of mountain mint (Cyclotrichium leucotrichum).” Chemistry & Biodiversity, (2022) 19(3), e202100775.
  • [6] Burmaoglu, S., Yilmaz, A. O., Polat, M. F., Kaya, R., Gulcin, İ., & Algul, O. “Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase inhibitors.” Bioorganic chemistry, (2019) 85, 191-197.
  • [7] Aksu, K., Akıncıoğlu, H., Akıncıoğlu, A., Goksu, S., Tuemer, F., & Gulcin, I. “Synthesis of novel sulfonamides incorporating phenethylamines and determination of their inhibition profiles against some metabolic enzymes.” Archiv der pharmazie, (2018) 351(9), 1800150.
  • [8] [8] Turkan, F., Cetin, A., Taslimi, P., & Gulçin, İ. “Some pyrazole derivatives: Potent carbonic anhydrase, α‐glycosidase, and cholinesterase enzyme inhibitors.” Archiv der pharmazie, (2018) 351(10), 1800200.
  • [9] Vitaku, E., Smith, D. T., & Njardarson, J. T. “Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: mini perspective.” Journal of medicinal chemistry, (2014). 57(24), 10257-10274.
  • [10] Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K., & Jonnalagadda, S. B. “A review of recent advances in nitrogen-containing molecules and their biological applications.” Molecules, (2020) 25(8), 1909.
  • [11] Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M.“A new and rapid colorimetric determination of acetylcholinesterase activity.” Biochemical pharmacology, (1961) 7(2), 88-95.
  • [12] Garibov, E., Taslimi, P., Sujayev, A., Bingol, Z., Cetinkaya, S., Gulcin, İ., ... & Supuran, C. T. “Synthesis of 4, 5-disubstituted-2-thioxo-1, 2, 3, 4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities.” Journal of enzyme inhibition and medicinal chemistry, (2016) 31(sup3), 1-9.
  • [13] Mao, F., Li, J., Wei, H., Huang, L., & Li, X. “Tacrine–propargyl amine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimer’s disease.” Journal of Enzyme Inhibition and Medicinal Chemistry, (2015) 30(6), 995-1001.
  • [14] Taslimi, P., Erden, Y., Mamedov, S., Zeynalova, L., Ladokhina, N., Tas, R., ... & Gulcin, I. “The biological activities, molecular docking studies, and anticancer effects of 1-arylsuphonylpyrazole derivatives.” Journal of biomolecular structure and dynamics, (2021) 39(9), 3336-3346.
  • [15] Schrödinger Release Glide; Schrödinger, LLC: New York, NY, USA. (2020-3)
  • [16] Nepovimova, E., Uliassi, E., Korabecny, J., Pena-Altamira, L. E., Samez, S., Pesaresi, A., ... & Bolognesi, M. L. “Multitarget drug design strategy: quinone–tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects.” Journal of medicinal chemistry, (2014) 57(20), 8576-8589.
  • [17] Brus, B., Kosak, U., Turk, S., Pislar, A., Coquelle, N., Kos, J., ... & Gobec, S. “Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor.” Journal of medicinal chemistry, (2014) 57(19), 8167-8179.
  • [18] Işık, M. “The binding mechanisms and inhibitory effect of intravenous anesthetics on AChE in vitro and in vivo: kinetic analysis and molecular docking.” Neurochemical research, (2019) 44(9), 2147-2155.
  • [19] Ozgun, D. O., Yamali, C., Gul, H. I., Taslimi, P., Gulcin, I., Yanik, T., & Supuran, C. T. “Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase.” Journal of enzyme inhibition and medicinal chemistry, (2016) 31(6), 1498-1501.
  • [20] Aksu, K., Topal, F., Gulcin, I., Tümer, F., & Göksu, S. “Acetylcholinesterase inhibitory and antioxidant activities of novel symmetric sulfamides derived from phenethylamines.” Archiv der Pharmazie, (2015) 348(6), 446-455.
  • [21] Ökten, S., Ekiz, M., Koçyiğit, Ü. M., Tutar, A., Çelik, İ., Akkurt, M., ... & Gülçin, İ. “Synthesis, characterization, crystal structures, theoretical calculations and biological evaluations of novel substituted tacrine derivatives as cholinesterase and carbonic anhydrase enzymes inhibitors.” Journal of Molecular Structure, (2019) 1175, 906-915.