Geleceğin Yemek Hizmetleri: Uzayda Beslenme Sistemleri

Giriş ve Çalışmanın Amacı: Beslenme, sağlığın korunması ve yaşamın sürdürülmesi için gerekli olan besin öğelerinin yeterli ve dengeli şekilde vücuda alınması ve kullanılmasıdır. Uzayda beslenme ise, uzayda sağlığın korunması için gerekli olan gıda maddelerini kapsar. İlk uzay görevi ile başlayan astronotların beslenme ihtiyacını karşılamak ile ilgili çalışmalar günümüzde hala devam etmektedir. Bu çalışma ile, uzayda beslenmenin önemi, uzay yiyeceğinin Merkür görevinden başlayarak mevcut Uluslararası Uzay İstasyonuna kadar olan gelişimi ve uzay beslenme sistemi (yemeklerin belirlenmesi, üretilmesi ve paketlenmesi) hakkında bilgilendirilme yapılması amaçlanmıştır. Kavramsal/Kuramsal Çerçeve: İnsanlar son yüzyılda çok sayıda uzay görevi yürütmüşlerdir ve bunların başarısında ana faktör astronotların fiziksel ve zihinsel sağlıkları olmuştur. Bunu sağlamada en önemli faktör uzay görevlerinde tüketilen gıda maddelerinin seçimi, üretilmesi ve paketlenmesidir. Yöntem: Gastronomi ve uzay yiyeceği kavramsal çerçevesini oluşturmak amacıyla yapılmış olan çalışmalardan yararlanılmış ve doküman analizi yöntemine başvurulmuştur. Bulgular: Sağlık ve beslenme, uzun süreli insanlı görevleri sırasında astronotların vücudunu canlı, sağlıklı ve enerjik tutmaya yardımcı olan yiyeceklerden elde edilen yaşamın hayati bileşenleridir. Araştırma ve teknolojinin gelişmesiyle birlikte, çoğu yeryüzünde tüketilenlere benzeyen çok çeşitli yemekleri uzay menüsüne dahil etmek mümkün hale gelmiştir. Sonuç: Uzay keşiflerinin insan vücudu üzerinde vücut kütlesi kaybı, görme ile ilgili değişiklikler, kemik yoğunluğunda kayıp -hatta anemi gibi birçok zararlı etkisi gözlemlenmiştir. Bu sorunların üstesinden gelmek için, uzay yiyeceği tasarlanırken çeşitli hususlar izlenmelidir. Beslenme gereksinimi, bir uzay görevinde önemli bir rol oynar. Çeşitli yiyecekler, bir uzay görevinin neden olduğu sınırlamaların üstesinden gelme potansiyeline sahiptir. Bu nedenle, uzay gıdası geliştirilirken eksiklikler ve hastalık gibi çeşitli parametreler dikkate alınmalıdır. Yiyecekler lokma büyüklüğünde, kolayca sindirilebilir ve raf ömürleri uzun olmalıdır. Bir uzay görevindeki astronotların beslenme durumu ve gereksinimleri göz önünde bulundurulurken teknolojik gelişmeler hakkında daha iyi fikir edinmek için daha fazla araştırmaya ihtiyaç vardır.

Food Services of the Future: Nutrition Systems in Space

Purpose of the study: Nutrition is the sufficient and balanced intake and use of nutrients essential for the protection of health and the maintain of life. Nutrition in space covers the foodstuffs necessary for maintaining health in space. Studies on meeting the nutritional needs of astronauts, which started with the first space mission, still continue today. This research aims to provide information about the importance of nutrition in space, the development of space food from the Mercury mission to the current International Space Station, and the space nutrition system (identification, production and packaging of meals). Literature Background: Humans have conducted numerous space missions over the past century, and the main factor in their success has been the physical and mental health of astronauts. The most important factor in achieving this is the selection, production and packaging of foodstuffs consumed in space missions. Method: In order to create the conceptual framework of gastronomy and space food, the studies carried out were used and the document analysis method was applied. Result: Health and nutrition are vital components of life derived from food that helps keep astronauts' bodies alive, healthy and energetic during long-term manned missions. With the development of research and technology, it has become possible to include a wide variety of dishes, most of which are similar to those consumed on earth, in the space menu. Conclusion: Many harmful effects of space exploration have been observed on the human body, such as loss of body mass, changes in vision, loss of bone density and even anemia. To overcome these problems, several considerations must be followed when designing space food. Nutritional requirement plays an important role in a space mission. A variety of foods has the potential to overcome the limitations of a space mission. Therefore, various parameters such as deficiencies and disease must be taken into account when developing space food. Food should be bite-sized, easily digestible, and have a long shelf life. More research is needed to get a better idea of technological advances when considering the nutritional status and needs of astronauts on a space mission.

___

  • AGTE, V. & TARWADI, K. (2010). The importance of nutrition in the prevention of ocular disease with special reference to cataract. Ophthalmic Research, 44(3), 166-72. doi: 10.1159/000316477.
  • AL ZUHAIRI, S. & DOĞAN, M. (2021). Fonksiyonel Gıdaların Gastronomideki Önemi, ART/icle: Sanat ve Tasarım Dergisi, 1(2), 249-267.
  • ALFREY, C.P., UDDEN, M.M., LEACH-HUNTOON, C., DRISCOLL, T., PICKETT, M.H. (1996). Control of red blood cell mass in spaceflight. Journal of Applied Physiology, 81(1), 98-104. doi: 10.1152/jappl.1996.81.1.98.
  • ALLAITH, A.A.A. (2008). Antioxidant activity of Bahraini date palm (Phoenix dactylifera L.) fruit of various cultivars. International Journal of Food Science & Technology, 43(6), 1033-1040. doi:10.1111/j.1365-2621.2007.01558.x.
  • AMANAT, A., WALY, M., MOHAMED ESSA, M. & DEVARAJAN, S. (2012). Nutritional and medicinal value of date fruit. In book: Dates: Production, Processing, Food, and Medicinal Values. Publisher: CRC press, pp. 361-376.
  • BAKER, E.S., BARRATT, M.R., SAMS, C.F. & WEAR, M.L. (2019). Human response to space flight. In: Principles of clinical medicine for space flight. New York, NY: Springer, pp. 367-411.
  • BERGOUIGNAN, A., STEIN, T.P., HABOLD, C., COXAM, V., O’ GORMAN, D. & BLANC, S. (2016). Towards human exploration of space: the THESEUS review series on nutrition and metabolism research priorities. NPJ Microgravity, 2:16029. doi: 10.1038/npjmgrav.2016.29.
  • BHATIA, S. (2018). Predicting risk perception: new insights from data science. Management Science, Articles in Advance, 65(8), 1–24. doi: 10.1287/mnsc.2018.3121.
  • BYCHKOV, A., RESHETNIKOVA, P., BYCHKOVA, E., PODGORBUNSKIKH, E., KOPTEV, V. (2021). The current state and future trends of space nutrition from a perspective of Astronauts’ physiology. International Journal of Gastronomy and Food Science, 24, 100324. doi: 10.1016/j.ijgfs.2021.100324.
  • BOGDANOV, S., JURENDIC, T., SIEBER, R. & GALLMANN, P. (2008). Honey for nutrition and health: A review. Journal of the American College of Nutrition, 27(6), 677-89. doi: 10.1080/07315724.2008.10719745.
  • BOURLAND, C.T. (1993). The development of food systems for space. Trends in Food Science & Technology, 4(9), 271-276. doi: 10.1016/0924-2244(93)90069-M.
  • CARACCIO, A.J. & HINTZE, P.E. (2013). Trash-to-gas: converting space trash into useful products. Proceedings of the 43rd International Conference on Environmental Systems. Available from: https://ntrs.nasa.gov/citations/20130011661. doi.org/10.2514/6.2013-3440.
  • CARPENTIER, W.R., CHARLES, J.B., SHELHAMER, M., HACKLER, A.S., JOHNSON, T.L., DOMINGO, C.M.M., SUTTON, J.P., SCOTT, G.B.I. & WOTRING, V.E. (2018). Biomedical find- ings from NASA’s Project Mercury: a case series. npj Microgravity, 4, 6. doi: 10.1038/s41526-018-0040-5.
  • CATAURO, P.M. & PERCHONOK, M.H. (2012). Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight. Journal of Food Science, 77(1), S29-39. doi: 10.1111/j.1750-3841.2011.02445.x.
  • COOPER, M.R. & DOUGLAS, G.L. (2015). Integration of product, package, process, and environment: A food system optimization. In edited by NASA.
  • COOPER, M., DOUGLAS, G. & PERCHONOK, M. (2011). Developing the NASA food system for long-duration missions. Journal of Food Science, 76(2), 40-48. doi: 10.1111/j.1750- 3841.2010.01982.x.
  • DAHLAN, H.A. (2019). Possible Malaysian contributions to future space food during a long-duration space mission. ASM Science Journal, 12(2), 162-71.
  • DAR, A.H., SOFI, H.A. & RAFIQ, S. (2017). Pumpkin the functional and therapeutic ingredient: A review. International Journal of Food Sciences and Nutrition, 2(6), 165-170.
  • DOUGLAS, G.L., ZWART, S.R. & SMITH, S.M. (2020). Space Food for Thought: Challenges and Considerations for Food and Nutrition on Exploration Missions. Journal of Nutrition, 150(9), 2242-2244. doi: 10.1093/jn/nxaa188.
  • DOUGLAS, G.L., COOPER, M.R., WU, H., GAZA, R., GUIDA, P. & YOUNG, M. (2021). Impact of galactic cosmic ray simulation on nutritional content of foods. Life Sciences in Space Research, 28, 22–25. doi: 10.1016/j.lssr.2020.12.001.
  • ENRICO, C. (2016). Space nutrition: The key role of nutrition in human space flight. arXiv:1610.00703. doi: 10.48550/arXiv.1610.00703.
  • FISCHER, C.L., JOHNSON, P.C. & BERRY, C.A. (1967). Red blood cell mass and plasma volume changes in manned space flight. JAMA, 200(7), 579-83. doi:10.1001/jama.1967.03120200057007.
  • GUPTA, C. & GUPTA, S. (2010). Food for space. International Journal of Biological Technology, 1(1), 121-123.
  • HACKNEY, K.J., SCOTT, J.M., HANSON, A.M., ENGLISH, K.L., DOWNS, M.E. & PLOUTZ-SNYDER, L.L. (2015). The astronaut-athlete: Optimizing human performance in space. The Journal of Strength and Conditioning Research, 29(12), 3531-45. doi: 10.1519/JSC.0000000000001191.
  • HEER, M., DE SANTO, N.G., CIRILLO, M. & DRUMMER, C. (2001). Body mass changes, energy, and protein metabolism in space. American Journal of Kidney Diseases, 38(3), 691-5. doi: 10.1053/ajkd.2001.27767.
  • HEINEY, A. (17.02.2017). Cabbage Patch: Fifth Crop Harvested Abroad Space Station. Erişim tarihi: 25.04.2023. https://www.nasa.gov/feature/cabbage-patch-fifth-crop-harvested-aboard-space-station.
  • JIANG, J., ZHANG, M., BHANDARI, B. & CAO, P. (2020). Current processing and packing technology for space foods: A review. Critical Reviews in Food Science and Nutrition, 60(21): 3573-88. doi: 10.1080/10408398.2019.1700348.
  • KIM, H.W. & RHEE, M.S. (2020). Space food and bacterial infections: Realities of the risk and role of science. Trends in Food Science & Technology, 106, 275–287. doi: 10.1016/J. TIFS.2020.10.023.
  • KUMAR, L. & GAIKWAD, K.K. (2023). Advanced food packaging systems for space exploration missions. Life Sciences in Space Research, 37, 7-14. doi: 10.1016/j.lssr.2023.01.005.
  • LANE, H.W., SMITH, S.M., RICE, B.L. & BOURLAND, C.T. (1994). Nutrition in space: lessons from the past applied to the future. The American Journal of Clinical Nutrition, 60(5): 801S-805S. doi: 10.1093/ajcn/60.5.801S PMID: 7942590.
  • LONG, Y., ZHANG, M., DEVAHASTIN, S. & CAO, P. (2022). Progresses in processing technologies for special foods with ultra-long shelf life. Critical Reviews in Food Science and Nutrition, 62(9), 2355-2374. doi: 10.1080/10408398.2020.1853034.
  • MADER, T.H., GIBSON, C.R., PASS, A.F., KRAMER, L.A., LEE A.G., FOGARTY, J., TARVER, W.J., DERVAY, J.P., HAMILTON, D.R., SARGSYAN, A., PHILLIPS, J.L., TRAN, D., LİPSKY, W., CHOI, J., STERN, C., KUYUMJİAN, R. & POLK, J.D. (2011). Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology, 118(10), 2058-2069. doi: 10.1016/j.ophtha.2011.06.021.
  • MAURYA, N.K. & ARYA, P. (2018). Amaranthus grain nutritional benefits: A review. Journal of Pharmacognosy and Phytochemistry, 7(2), 2258-2262.
  • OH, M.S. & URIBARRI, J. (1999). Electrolytes, water, and acid-base balance. In: Modern nutrition in health and disease. 9th ed. Baltimore, MD: Lippincott Williams & Wilkins, pp. 105-140.
  • OLUWAFEMI, F.A., de La TORRE, A., AFOLAYAN, E.M., OLALEKAN-AJAYI, B.M., DHITAL, B., MORA-ALMANZA, J.G., POTRIVITU, G, CREECH, J. & RIVOLTA, A. (2018). Space food and nutrition in a long term manned mission. Advances in Astronautics Science and Technology, 1, 1-21. doi: 10.1007/s42423-018-0016-2.
  • PERCHONOK, M. & BOURLAND, C. (2002). NASA food systems: past, present, and future. Nutrition, 18(10), 913–920. doi: 10.1016/s0899-9007(02)00910-3.
  • PERCHONOK, M.H., COOPER, M.R. & CATAURO, P.M. (2012). Mission to Mars: Food production and processing for the final frontier. Annual Review of Food Science and Technology, 3(1), 311-330. doi: 10.1146/annurev-food-022811-101222 PMID: 22136130.
  • PHIMOLSIRIPOL, Y. & SUPPAKUL, P. (2016). Techniques in shelf life evaluation of food products. In Reference module in food science, ed. G. W. Smithers, 1–8. Amsterdam: Elsevier.
  • POMETTO, A. & BOURLAND, C. (2003). "NASA Food Technology Commercial Space Center Mission and Activities," SAE Technical Paper 2003-01-2375. doi: 10.4271/2003-01-2375.
  • RUGE, B. (2004). Risk Matrix as Tool for Risk Assessment in the Chemical Process Industries, In: C. Spitzer, U. Schmocker, V.N. Dang (Eds.), Probabilistic Safety Assessment and Management: PSAM 7-ESREL '04. pp. 2693. Springer.
  • SCHNEIDER, V., OGANOV, V., LEBLANC, A., RAKMONOV, A., TAGGART, L., BAKULIN, A., HUNTOON, C., GRIGORIEV, A. & VARONIN, L. (1995). Bone and body mass changes during space flight. Acta Astronautica, 36(8-12), 463-6. doi: 10.1016/0094-5765(95)00131-x.
  • SAKHARKAR, A. & YANG, J. (2023). Designing a novel monitoring approach for the effects of space travel on astronauts’ health. Life, 13(2), 576. doi.org/10.3390/life13020576
  • SIBONGA J.D. (2013). Spaceflight-induced bone loss: Is there an osteoporosis risk? Current Osteoporosis Reports, 11(2): 92-98. doi: 10.1007/s11914-013-0136-5 PMID: 23564190.
  • SMITH, S.M., HEER, M.A., SHACKELFORD, L.C., SIBONGA, J.D., PLOUTZ-SNYDER, L. & ZWART, S.R. (2012). Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. Journal of Bone and Mineral Metabolism, 27(9), 1896-1906. doi: 10.1002/jbmr.1647.
  • SMITH, S.M., ZWART, S.R., BLOCK, G., RICE, B.L. & DAVIS-STREET, J.E. (2005). The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. Journal of Nutrition, 135(3), 437- 43. doi: 10.1093/jn/135.3.437.
  • SMITH, S.M., ZWART, S.R., KLOERIS, V. & HEER, M. (2009). Nutritional biochemistry of space flight. In: Space science, exploration and policies series. Nova Science Publishers Incorporated, New York. Available from: https://www.nasa.gov/sites/default/files/atoms/files/nutritional_biochemistry_of_space_flight_-fpdis.pdf
  • STEIN, T.P. (2001). Nutrition in the space station era. Nutrition Research Reviews, 14(1), 87-118. doi: 10.1079/NRR200119.
  • THURMOND, B.A., GILLAN, D.J., PERCHONOK, M.G., MARCUS, B.A. & BOURLAND C.T. (1986). Space Station Food System, SAE Technical Paper 860930, Intersociety Conference on Environmental Systems. doi: 10.4271/860930.
  • TIETZ, N.W., PRUDEN, E.L. & SIGGAARD-ANDERSON, O. (1994). Electrolytes. In: Burtis C.A. & Ashwood E.R., eds. Tietz Textbook of Clinical Chemistry (2nd ed). Philadelphia: W.B. Saunders Company, London, 1354-1374.
  • ULLAH, R., NADEEM, M., KHALIQUE, A., IMRAN, M., MEHMOOD, S., JAVID, A., HUSSAIN, J. (2016). Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. Journal of Food Science and Technology, 53(4),1750-8. doi: 10.1007/s13197-015-1967-0.
  • VARESE, E. & CANE, P. (2017). From space food research and innovation to immediate advantages for Earth eating habits: an aerospace – food producer company case study. British Food Journal, 119(11), 2448-2461. doi: 10.1108/BFJ-04-2017- 0216.
  • WARDE, A. (1999). Convenience food: Space and timing. British Food Journal, 101(7), 518–527. doi: 10.1108/00070709910279018.
  • WHITEHURST, T.N., & BOURLAND, C.T. (1992). Space station freedom food management for advancing mobility and sea air and space, SAE Technical Paper 921248, doi: 10.4271/921248.
  • ZWART, S.R., GIBSON, C.R., MADER, T.H., ERICSON, K., PLOUTZ-SNYDER, R., HEER, M. & SMITH, S.M. (2012). Vision changes after spaceflight are related to alterations in folate- and vitamin B-12-dependent one-carbon metabolism. Journal of Nutrition, 142(3), 427-31. doi: 10.3945/jn.111.154245.