ORMAN EKOSİSTEMLERİNDE KARBON DİNAMİĞİNİN TEMEL BİLEŞENLERİ VE PLANLAMADAKİ YERİ

Orman ekosistemleri atmosferdeki karbon döngüsüne önemli katkı sağlarlar. Karbon orman ekosistemleri içerisinde ve dışarısında farklı havuzlarda tutulmaktadır. Toplam karbon miktarının daha isabetli hesaplanabilmesi için, orman ekosistemleriyle ilgili tüm karbon bileşenlerinin içerikleriyle birlikte belirlenmesi gerekmektedir. Karbon, genellikle ormandaki canlı biyokütlede, dikili-devrik odun ya da ölü-diri örtüde, toprakta ve oduna dayalı ürünler ile dolaylı olarak da, odun-ikame maddelerde olmak üzere çok farklı havuzlarda depolanmaktadır. Atmosfere karbon salınımı ise, doğrudan ormandan yapılan üretim-bakım çalışmaları, doğal ölüm ve ayrışma ile dolaylı olarak da üretim, taşımacılık ve işleme sürecinde meydana gelmektedir. Karbon birikimi ile salınımı arasındaki dengenin belirlenmesi ve karbon dinamiğinin uzun vadeli doğru tahmini için karbon havuzlarının tüm bileşenleri ile birlikte belirlenmesi gerekir. Ayrıca, enerji üretim politikaları, ormancılık politikaları, planlama ve yönetim faaliyetlerinin karbon döngüsü ve dolayısıyla iklim değişikliği üzerindeki etkilerinin anlaşılmasında önemli rol oynamaktadır. Bu makalede, öncelikle karbon bileşenleri belirlenmiş ve her bir karbon havuzundaki karbonun hesaplanma yöntemi değerlendirilmiştir. Karbon bileşenlerinin hesaplanmasına yönelik genel bir çerçeve çizilmiş ve her bir bileşenin iklim değişikliği ile mücadelede karbon azaltımındaki rolüne de dikkat çekilerek değerlendirmeler yapılmıştır. Sonuçta, orman ekosistemlerinin sürdürülebilir yönetiminde etkin politika ve stratejilerinin belirlenmesi ve iklim değişikliği ile etkin mücadele için karbon havuzlarının doğru belirlenmesi ve hesaplanması gerektiğine dikkat çekilmiştir.

PRINCIPAL COMPONENTS OF CARBON DYNAMICS IN FOREST ECOSYSTEMS AND PLANNING

Forest ecosystems contribute significantly to the carbon cycle in the atmosphere. Carbon is held in different pools inside and outside forest ecosystems. In order to calculate the total carbon amount appropriately, all carbon components related to forest ecosystems should be determined together with their contents. Carbon is stored in many different pools, usually in living biomass in the forest, live or dead trees, soil and harvested wood products, and indirectly in wood-substitutes. Carbon emissions to the atmosphere occur directly in the forest operations conducted in the forest, natural death and decomposition and indirectly in the harvesting, transportation and production processes. Determining the balance between carbon storage and emission as well as the long-term prediction of carbon dynamics requires accurate calculation of carbon pools with all components. In addition, it plays an important role in understanding the effects of energy production policies, forestry policies, planning and management activities on the carbon cycle and therefore climate change. In this article, first of all, carbon components were determined and the calculation method of carbon in each carbon pool was assessed. A general framework was developed for the calculation of carbon components and assessment were conducted by drawing attention to the role of each component in carbon reduction in the fight against climate change. As a result, it was pointed out that carbon pools should be determined and calculated accurately in order to determine effective policies and strategies in the sustainable management of forest ecosystems and to effectively combat climate change.

___

  • Başkent, E.Z. 2020. A Framework for Characterizing and Regulating Ecosystem Services in a Management Planning Context, Forests 2020, 11(1), 102; https://doi.org/10.3390/f11010102
  • Başkent, E.Z., Başkaya, Ş. and Terzioğlu, S. 2008. Developing and implementing participatory and ecosystem based multiple use forest management planning approach (ETÇAP): Yalnızçam case study, Forest Ecology and Management 256: 798–807
  • Bettinger, P. and Chung, W. 2004. The key literature of and trends in forest-level management planning in North America, 1950–2001. International Forestry Review 6(1): 40–50
  • Black, K., Hendrick, E., Gallagher., G.,Farrington, P. 2012. Establishment of Irelands projected reference level for Forest Management for the period 2013-2020 under Article 3.4 of the Kyoto Protocol. Irish Forestry 69: 7-3.
  • Bond-Lamberty et al., 2008. Decomposition and Fragmentation of Coarse Woody Debris: Re-visiting a Boreal Black Spruce Chronosequence Ecosystems, 11: 831–840
  • Canals Revilla, G.G., Gutierrez del Olmo, E.V., Martin, J. and Gonzalez R. 2014 - Carbon storage in HWPS. Accounting for Spanish particleboard and fiberboard. Forest Systems, 23(2): 225-235.
  • Crosby, CAF, Christopher, F., Hofmann, C., Horvitz,E., May, E. and Vara, R. 2010. Carbon Sequestration and its Relationship to Forest Management and Biomass Harvesting in Vermont. Environmental Studies Senior Seminar, Middlebury College Winter 2010
  • Desai, A.R., Bolstad, P.V., Cook, B.D., Davis, K.J. and Carey, E.V. 2005. Comparing net ecosystem exchange of carbon dioxide between old growth and mature forest in upper Midwest, USA. Agr. For. Meteorol. 128, 33–55.
  • EPA, 2015. Inventory of US Greenhouse Gas Emissions and Sinks: 1009-2013. EPA 430-R-15-004. Washington, D.C. Office of Atmospheric Programs. 564p. http://www.epa.gov/climatechange/ghgemissions/ usinventoryreport.html
  • Hillier B. and Murphy R., 2000 - Life cycle assessment of forest products - a good story to tell. Journal of the Institute of Wood Science, 15 (4): 221-232.
  • Hofer P., Taverna R., Werner F., Kaufmann E., Thürig E. 2007. The CO2 effects of the Swiss forestry and timber industry: scenario of future potential for climate-change mitigation. Environmental studies no. 0739. Federal Office for the Environment: Bern, 102 p.
  • IPCC, 2006. Guidelines for National Greenhouse Gas Inventories. Prepared to National Greenhouse Gas Inventories Programme (H.S. Eggleston et al., editors). Institute for Global Environmental Strategies (IGES), Hayama, Japan.
  • Liski, J., Pussinen, A., Pingoud, K., Mäkipää, R. and Karjalainen, T. 2001 Which rotation length is favourable to carbon sequestration? Can. J. For. Res. 31, 2004–2013.
  • Masera, O.R., Garza-Caligaris, J.F., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G.J., Pussinen, A., de Jong, B.H.J., and Mohren, G.M.J. 2003. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecological Modelling 164: 177 – 199.
  • Olajuyigbe et al, 2011. Stocks and decay dynamics of above- and belowground coarse woody debris in managed Sitka spruce forests in Ireland. Forest Ecology and Management, 262:1109-1118
  • Pan, Y., Birdsey, R.A., Fang J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala S., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S. and Hayes, D. 2011 - A large and persistent carbon sink in the world’s Forests. Science, 333 (6045): 988-993
  • Perone, A., Di Benedetto, S., Vizzarri, M. and Lasserre, B., 2015 - Carbon stock in wood products: implications for carbon accounting at national and local scale in Italy. L’Italia Forestale e Montana, 70 (4): 257-272.
  • Perugini, L., Vespertino, D. and Valentini, R. 2012. Conferenza di Durban sul clima: nuove prospettive per il mondo forestale. Forest, 9 (1): 1-7
  • Petersen, A.K. and B. Solberg, 2005. Environmental and economic impacts of substitution between wood products and alternative materials: a review of micro-level analyses from Norway and Sweden. Forest Policy and Economics 7: 249-259
  • Pilli, R., Fiorense, G. and Grassi, G. 2015. EU mitigation potential of harvested wood products. Carbon Balance Manag. 10, 6.
  • Pingoud, K. and Wagner, F. 2006. Methane emissions from landfills and carbon dynamics of harvested wood Products: The first-order decay revisited. Mitigation and Adaptation Strategies for Global Change 11(5): 961-978.
  • Pukkala, T. 2004 Dealing with ecological objectives in the MONSU planning system. Silva Lusit., 1–15(Special issue).
  • Pukkala, T. 2014 Does biofuel harvesting and continuous cover management increase carbon sequestration?. For. Policy Econ. 43, 41
  • Pukkala, T. 2016. Does management improve the carbon balance of forestry? Forestry. 90. 10.1093.
  • Sathre, R., and J. O’Connor. 2010A. A Synthesis of Research on Wood Products and Greenhouse Gas Impacts (2nd Edition). Vanvouver, B.C. FPInnovations. 117p. (Technical Report No. TR-19R)
  • Sathre, R., and J. O’Connor. 2010B. Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environmental Science & Policy 13: 104–114.
  • Tonosaki M., 2009 - Harvested wood products accounting in the post Kyoto commitment period. J. Wood Science, 55 (6): 390-39
  • Tsunetsugu, Y. and Tonosaki, M. (2010) Quantitative estimation of carbon removal effects due to wood utilization up to 2050 in Japan: Effects from carbon storage and substitution of fossil fuels by harvested wood products. Journal of Wood Science 56(4): 339-344
  • UNECE/FAO, 2008 - Workshop on Harvested Wood Products in the Context of Climate Change Policies. Chair’s conclusions and recommendations.
  • Gelman, V, Hulkkonen, V., Kantola,R., Nousiainen, M., Nousiainen, V. and Poku-Marboah, M. 2013. Impacts of forest management practices on forest carbon. In HENVI Workshop, Interdisciplinary approach to forests and climate change Helsinki University Centre for Environment, HENVI University of Helsinki, 08.04.2013.
  • Wihersaari, M. 2005. Greenhouse gas emissions from final harvest fuel chip production in Finland. Biomass Bioenergy, 28, 435–443.