GLİSEROL İLE STABİLİZE EDİLMİŞ TOPRAK KAPLAMALARIN NEM DİRENCİ

Toprak mimarisinin temel bileşenlerinden biri, yapıları atmosferik ve antropik etkenlerden korudukları için kaplamalarıdır. Bununla birlikte, toprağın higroskopik doğası gereği, sıvalar yağmur ve yeraltı suyu emilimine karşı oldukça hassastır. Bu bozunma ajanlarıyla başa çıkmak için uzmanlar ve zanaatkarlar tarih boyunca farklı stabilize edici maddelerle testler yaptılar. Bu makale, toprak kaplamaların dayanıklılığını ve direncini artırmak için küçük gliserol fraksiyonlarının kullanımının doğrulanmasına dayanan bir dizi deneyi gözden geçirmektedir. Gliserol, biyodizel üretimi gibi çeşitli endüstriyel süreçlerin bir yan ürünüdür. Son zamanlarda üretiminde önemli bir artış olması, hem tarihi yapı bileşenlerini hem de çağdaş yapıları sağlamlaştırmak ve korumak için uygun bir kaynak haline getirmiştir. Yapışkanlığı, gereken su miktarını ve kuruma süresini doğrulamak için doğal toprak ve gliserol ile stabilize edilmiş diğer harçları karşılaştırmalı olarak analiz ettik. Ardından, kılcal emme koşullarına ve yağmur etkisine maruz kalmak için duvarlara uygulanan düz testler ve sıvalar gerçekleştirdik. Gliserol ilave edilen harçların yapışkanlığının %12 artması, karışımlar için gereken su miktarını %18 azaltmakta ve kuruma süresini yaklaşık 7 saat uzamaktadır. Stabilize edilmiş numuneler, kılcallık tarafından %26 daha az su emer ve hava koşullarına maruz kalan kaplamalar, sekiz ay dışarıda kaldıktan sonra bütünlüklerini korur. Küçük hacimlerde gliserol ile zenginleştirilmiş toprak harçlar, toprak sıvalarını ve korudukları yapıları en çok kışkırtan bu faktörlere oldukça olumlu bir tepki geliştirdi. Toprak karışımlarını iyileştiren ve ekonomik, ekolojik ve kültürel açıdan sürdürülebilir bir malzemeye sahip olmak mümkündür.

MOISTURE RESISTANCE OF EARTHEN COATINGS STABILIZED WITH GLYCEROL

One of the fundamental components of earth architecture is its coatings because they protect structures from atmospheric and anthropic agents. However, due to the hygroscopic nature of the earth, the plasters are highly vulnerable to rain and groundwater absorption. To deal with these agents of decay, experts and artisans have tested with different stabilizing substances throughout history. This article reviews a series of experiments based on verifying the use of small glycerol fractions to increase the durability and resistance of the earth coatings. Glycerol is a byproduct of various industrial processes, such as the production of biodiesel. Recently, there has been a significant increase in its production, making it a viable resource to consolidate and protect both historical building components and contemporary buildings. We analyzed comparatively mortars of natural earth, and others stabilized with glycerol to verify the cohesiveness, quantity of water required, and drying time. Subsequently, we performed flat tests and plasters applied on walls to undergo capillary absorption conditions and rain impact. An increase in the cohesiveness of the mortars added with glycerol of 12%, decreases the amount of water required for the mixtures by 18% and the drying time rises by almost 7 hours. The stabilized specimens absorbed 26% less water by capillarity, and the exposed coatings to weather conditions maintain their integrity after eight months of staying outdoors. Earthen mortars that were enriched with small volumes of glycerol developed a highly positive response to these factors, which are the most likely to provoke the earth plasters and the structures they protect. It is possible to have a material that improves the mixtures of soil and is sustainable from an economic, ecological, and cultural point of view.

___

  • Ávila, E., & Guerrero, L. (2018). El mucílago de Opuntia Ficus como estabilizante en recubrimientos de tierra. Memorias del SIACOT 2018, Antigua Guatemala: PROTERRA, 115-126.
  • Betancourt, C., de Melo Prado, R., Castellanos, L., & Silva, C. (2016). Caracteristicas de la glicerina generada en la producción de biodiesel, aplicaciones generales y su uso en el suelo. México: Ediciones INCA, Instituto Nacional de Ciencias Agrícolas, 7-14.
  • Guerrero, L. (2007). Arquitectura de tierra, hacia la recuperación de una cultura constructiva. Apuntes, 182-201.
  • Guerrero, L. (2015). Recubrimientos de tierra compactada para la conservación del patrimonio arqueológico de México y el Salvador. Memorias del SIACOT 2015, Cuenca, Ecuador: PROTERRA, 233-244.
  • Guerrero, L. (2016). El papel de la humedad y la compactación en la elaboración de recubrimientos de tierra. Construcción con tierra CT7, 11-22, Buenos Aires: Universidad de Buenos Aires.
  • Kita, Y., A. Daneels, y A. Romo De Vivar. (2013). Chemical analysis to identify organic compounds in pre-Colombian monumental earthen architecture. TOJSAT, 3 (1):39–45.
  • Lafuente, G. (2017). Glicerol: Síntesis y Aplicaciones. Madrid: UNED Facultad de Ciencias.
  • Mattone, R., et Al. (2005). Uso de productos naturales para mejorar el comportamiento al agua de revoques a base de tierra, en Terra em Seminário 2005, Lisboa: Argumentum, 266–69.
  • Mattone, M. et. Al. (2016). Stabilization of earthen plasters: Exchange of knowledge and experiences between Italy and Morocco. Journal of Materials and Environmental Science, 7 (10):3647–55.
  • Mattone, M. et. Al. (2017). Experimentation of Earth-Gypsum Plasters for the Conservation of Earthen Constructions. International Journal of Architectural Heritage Conservation, Analysis, and Restoration, 11:6, 763-772, DOI:10.1080/15583058.2017.1290850.
  • Minke, G. (2005). Manual de construcción en tierra, Uruguay: Fin de Siglo.
  • Minke, G. (2013). Revoques de barro, mezclas, aplicaciones y tratamientos. Bariloche, Argentina: Icaria editorial. Normal 11/85 (1985). Assorbimento d’acqua per capillarità – Coeficiente di assorbimento capillare. Italia: CNR-ICR.
  • Pérez, A.; Guerrero, L.; González, J. y Prado, R. (2017). Nopal mucilage as hydration agent for quicklime; extraction methods, Ge-conservación, 11: pp. 189-195.
  • Pérez, N. (2009). Formulación de un mortero de inyección con mucílago de nopal para restauración de pintura mural. Tesis para la obtención del grado de Maestría. Tlaquepaque, Jalisco: Instituto Tecnológico y de Estudios Superiores de Occidente.
  • Pérez, N. (2016). Los adobes arqueológicos de la Gran pirámide de Cholula. Tesis Doctoral de Ciencia e Ingeniería de los Materiales. México: UNAM.
  • Stazi, F., A. Nacci, F. Tittarelli, E. Pasqualini, and P. Munafò. (2016). An experimental study on earthen plasters for earthen building protection: The effect of different admixtures and surface treatments. Journal of Cultural Heritage, 17:27–41. doi:10.1016/j.culher.2015.07.009.
  • Torres, P., et. al. (2015). La baba y el mucílago de nopal, una alternativa natural para la conservación de acabados arquitectónicos de tierra. Revista Interdisciplinaria, INAH, 99: pp. 93-114. UNE-EN-16302
  • Warren J. (1999). Conservation of earth structures. Oxford: Butterworth Heinemann.