Obezite ve Tip-2 Diyabetin Tedavisinde Manyetik Alan ve Alternatif Yaklaşımlar

Obezite ve Tip-2 Diyabet (Tip-2 DM) dünyada gelişmiş ve gelişmekte olan ülkelerde morbidite ve mortalite neden olanmetabolik hastalıklardır. Obezite, Tip-2 DM için önemli bir risk faktörü olmakla beraber Alzheimer, Parkinson gibihastalıkları da tetiklemektedir. Tüm dünya ülkelerinde olduğu gibi ülkemizde de yaşam tarzı ile Obezite ve Obezite’nintetiklediği Tip-2 Diyabet’i önleme ve kontrol altına alma programları uygulanmaktadır. Obezite’nin tetiklediği Tip-2Diyabet’le birlikte gelişen hipergliseminin kademeli olarak ortaya çıkması ve yıllar boyunca klinik olarak bulguvermemesi hastalığın teşhisini zorlaştırmıştır. Bu nedenle bilim insanları çalışmalarını Obezite ve Obezite’nin tetiklediğiTip-2 Diyabeti kontrol altına alma ve önlemek için yeni cerrahi, farmakolojik ve non-farmakolojik tedavi yöntemleriniaraştırmaya yönlendirmiştir. Obezite tedavisinde amaç, gerçekçi bir vücut ağırlığı kaybı hedeflenerek, Obezite’ye ilişkinmorbidite ve mortalite risklerini azaltmak, bireye yeterli ve dengeli beslenme alışkanlığı kazandırmak ve yaşam kalitesiniyükseltmektir. Bilimsel çalışmalar, yeni alternatif farmakolojik tedavilerin yanısıra, non-farmakolojik olarak sağlıküzerine birçok olumlu etkilere sahip ve beslenmede rol oynayan pre-probiyotikler ve gelişen teknoloji ile birliktehayatımızın ayrılmaz bir parçası olan non-invaziv manyetik alan uygulamalarının tedavideki yerinin belirlenmesidoğrultusunda ilerlemektedir. Derlemenin amacı Obezite ve Tip-2 DM tedavisinde yeni alternatif farmakolojik ve nonfarmakolojik yaklaşımların yeri ve önemini açıklamaktır.

Magnetic Field and Alternative Approaches in the Treatment of Obesity and Type-2 Diabetes

Obesity and Type-2 Diabetes (Type-2 DM) are metabolic diseases leading morbidity and mortality in developed and developing countries worldwide. Obesity is an important risk factor for Type 2 diabetes that induces Alzheimer, Parkinson and the other diseases. As in most countries, prevention and control programs against obesity-induced Type 2 diabetes and obesity itself are implemented in our country. The gradual emergence of hyperglycemia with obesityinduced Type 2 Diabetes and the lack of clinical symptoms for years has made it diffucult to diagnose the disease. This phenomenonhas led scientists to investigate new alternative pharmacological and non-pharmacological treatments for controlling and preventing Obesity and thus Type-2 DM. The aim of obesity treatment is to reduce obesity related morbidity and mortality risks by aiming at a realistic loss of body weight, to provide adequate and balanced nutrition habits and to increase quality of life. Scientific studies are proceeding in the direction of determining the therapeutic place of non-pharmacological treatments, as non-invasive magnetic field applications, which are an integral part of our lives with in developing technology and new pre-prophybiotics, which have many positive effects on health and play a role in nutrition as well as alternative pharmacological treatments of Obesity and Type-2 DM. The aim of this review is to explain the place and importance of new alternative pharmacological and non-pharmacological approaches in the treatment of obesity and type-2 DM.

___

  • 1. Klein S, Sheard NF, Pi-Sunyer X, Daly A, Wylie-Rosett J, Kulkarni K, Clark NG; American Diabetes Association; North American Association for the Study of Obesity; American Society for Clinical Nutrition. Weight management using lifestyle modification in the prevention and management of type 2 diabetes: rationale and strategies. A statement of the American Diabetes Association, the North American Association for the Study of Obesity and the American Society for Clinical Nutrition. Am J Clin Nutr. 2004;80:257-63.
  • 2. Gougeon R. Obesity and the risk for diabetes. Nutrition in the Prevention and Treatment of Disease (Eds: B Carol, C Ann, R Cheryl, M Elaine). San Diego, Academic Press, 2001.
  • 3. American Diabetes Association, Position statement: Nutrition recommendation and interventions for diabetes. Diabetes Care. 2007;30:48-65.
  • 4. Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction. Eur J Clin Invest. 2002;32:14-23.
  • 5. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;14:840-6.
  • 6. Akal Yıldız E. Obezite ve tip-2 diyabet. Sağlık Bakanlığı. 2012;729..
  • 7. Hotamisligil GS. Inflammation, metaflammation and immune metabolic disorders. Nature. 2017;542:177-85.
  • 8. World J. Diabetes. 2017;15:120-71.
  • 9. Türkiye Cumhuriyeti Sağlık Bakanlığı Sağlığın Geliştirilmesi Genel Müdürlüğü. Türkiye beden ağırlığı algısı araştırması.Erişimtarihi:15Mayıs2017,Availablefrom:https://sbu.saglik.gov.tr/Ekutuphane/kitaplar/bedenagir_tr.pdf.
  • 10. Göktürk RD. Tip II diyabetik hastalarda pankreatik beta hücre fonksiyonunun kantitatif olarak değerlendirilmesi (Uzmanlık Tezi). İstanbul, TC. Sağlık Bakanlığı Haseki Eğitim ve Araştırma Hastanesi. 2005.
  • 11. Delibaş N, Kılınç İ. İnsülin ve gliklazid tedavisinin streptozotosin diyabetik rat hipokampüslerinde lipid peroksidasyonuna etkisi. Türk Klinik Biyokimya Dergisi. 2003;1:33-9.
  • 12. Girard J. Is leptin the link between obesity and insülin resistance? Diabetes Metab. 1997;23:16-24.
  • 13. Ulukaya S, Alper I, Aydin U, Kilic M. Successful resuscitation of cardiac arrest due to postreperfusion syndrome during orthotopic liver transplantation: a case report. Transplant Proc.2007;39:3527-9.
  • 14. Fujimoto S, Tsuura Y, Ishida H, Tsuji K, Mukai E, Kajikawa M et al. Augmentation of basal insulin release from rat islets by preexposure to a high concentration of glucose. Am J Physiol Endocrinol Metab. 2000;279:927-40.
  • 15. Sever UN. Koroner arter hastalığı olan olgularda insülin direnci ve bozulmuş/diyabetik glukoz toleransı sıklığının sağlıklı populasyonla karşılaştırılması (Uzmanlık Tezi). İstanbul, T.C. Sağlık Bakanlığı Dr. Lütfi Kırdar Kartal Eğitim ve Araştırma Hastanesi. 2006.
  • 16. LeRoith D. Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med. 2002;28:3-11.
  • 17. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H et al. Recent advances in the relationship between obesity, inflammation and insülin resistance. Eur Cytokine Netw. 2006;17:4-12.
  • 18. Mercado MM, McLenithan JC, Silver KD, Shuldiner AR. Genetics of insulin resistance. Curr Diab Rep. 2002;2:83-95.
  • 19. Moller DE, Cohen O, Yamaguchi Y, Assiz R, Grigorescu F, Eberle A et al. Prevalence of mutations in the insulin receptor gene in subjects with features of the type A syndrome of insulin resistance. Diabetes. 1994;43:247-55-58.
  • 20. Başkal N. Diyabet tedavisinde yeni açılımlar. Endokrinolojide Diyalog. 2007;4:215-22.
  • 21. Robertson RP, Harmon J, Tran PO, Poitout V. β-cell glucose toxicity, lipotoxicity and chronic oxidative stress in type 2 diabetes. Diabetes. 2004;53:119-124.
  • 22. Altan N, Dinçel As, Koca C. Diabetes mellitus and oxidative stress. Türk Biyokimya Dergisi. 2006;31:51-6.
  • 23. Kajimoto Y, Kaneto H. Role of oxidative stress in pancreatic-cell dysfunction. Ann. N.Y. Acad. Sci. 2004;1011:168-76.
  • 24. Girard J. The incretins: From the concept to their use in the treatment of type 2 diabetes. Part A: Incretins: Concept and physiological functions. Diabetes & Metabolism. 2008;34:550-9.
  • 25. Lupi R, Del Prato S. β-cell apoptosis in type 2 diabetes: quantitative and functional consequences. Diabetes Metab. 2008;34:56- 64.
  • 26. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;34:62-9.
  • 27. Hazman Ö. Oral anti-diyabetik ilaç sitagliptinin oksidan-antioksidan denge üzerine etkisinin deneysel tip-2 diyabet modeli oluşturulan ratlarda araştırılması (Uzmanlık Tezi). Afyon, Afyon Kocatepe Üniversitesi. 2011.
  • 28. Hotamisligil GS, Yu X, Chen H, Sjöberg S, Roux J, Zhang L et al. Leptin deficiency shifts mast cells toward anti-inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages. Cell Metab. 2015;1:1045-58.
  • 29. Brozzi F, Nardelli TR, Lopes M, Millard I, Barthson J, Igoillo-Esteve M et al. Cytokines induce endoplasmicreticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia. 2015;58:2307-16.
  • 30. Yalcin A, Hotamisligil GS. Impact of ER protein homeostasis on metabolism. Diabetes. 2013;62:691-3.
  • 31. Engin F, Nguyen T, Yermalovich A, Hotamisligil GS. Aberrant is let unfolded protein response in type 2 diabetes. Sci Rep. 2014;11:40-54.
  • 32. Yang L, Calay ES, Fan J, Arduini A, Kunz RC, Gygi SP et al. Metabolism. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science. 2015;31:500-6.
  • 33. Girard J, Ferré P, Foufelle F. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr. 1997;17:325-52.
  • 34. Garron ML, Cygler M. Uronic polysaccharide degrading enzymes. Curr Opin Struct Biol. 2014;28:87-95.
  • 35. Samson WK, Murphy TC, Robison D, Vargas T, Tau E, Chang JK. A35 amino acid fragment of leptin inhibits feeding in the rat. Endocrinology. 1996;137:5182-5.
  • 36. Girard J. The incretins: from the concept to their use in the treatment of type 2 diabetes. Part A: incretins: concept andphysiological functions. Diabetes Metab. 2008;34:550-9.
  • 37. Jeffrey S. Flier. Hormone resistance in diabetes and obesity: Insulin, leptin, and FGF21. Yale J Biol Med. 2012;85:405-14.
  • 38. Moran O, Phillip M. Leptin: obesity, diabetes and other peripheral effects a review. Pediatr Diabetes. 2003;4:101-9.
  • 39. Golay A, Felber JP, Meyer HU, Curchod B, Maeder E, Jéquier E. Study on lipid metabolism in obesity diabetes. Metabolism. 1984;33:111-6.
  • 40. Cao H, Sekiya M, Ertunc ME, Burak MF, Mayers JR, White A et al. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab. 2013;17:768-778.
  • 41. Baykal Y, Gök F, Kocabalkan F. Isı şok proteinleri ve hastalıklardaki rolü. Türkiye Klinikleri J Med Sci. 2000;20:187-195.
  • 42. Öztürk E, Kahveci N, Özlük K, Yılmazlar T. Isı şok proteinleri. Ulusal Cerrahi Dergisi. 2009;25:131-6.
  • 43. González-Clemente JM, Mauricio D, Richart C, Broch M, Caixàs A, Megia A et al. Diabetic neuropathy is associated with activation of the TNF-alpha system in subjects with type 1 diabetes mellitus. Clin Endocrinol (Oxf) 2005;63:525-9.
  • 44. Molin MN, Ferder L, Manucha W. Emerging role of nitric oxide and heat shock proteins in insulin resistance. Curr Hypertens Rep. 2016;18:1-13.
  • 45. Simar D, Jacques A, Caillaud C. Heat shock proteins induction reduces stress kinases activation, potentially improving insülin signalling in monocytes from obese subjects. Cell Stres Chaperones. 2012;17:615-21.
  • 46. Chung J, Nguyen AK, Henstridge DC, Holmes AG, Chan MH, Mesa JL et al. HSP72 protects against obesity-induced insülin resistance. Proc Natl Acad Sci USA. 2008;105:1739-44.
  • 47. Simar D, Jacques A, Caillaud C.Heat shock proteins induction reduces stress kinases activation, potentially improving insulin signalling in monocytes from obese subjects. Cell Stress Chaperones. 2012;17:615-21.
  • 48. Eizirik DL, Miani M, Cardozo AK. Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia. 2013;56:234-41.
  • 49. Kavanagh K, Flynn DM, Jenkins KA, Zhang L, Wagner JD. Restoring HSP70 deficiencies improves glucose tolerance in diabetic monkeys. Am J Physiol Endocrinol Metab. 2011;300:894-901.
  • 50. Calabrese V, Mancuso C, Sapienza M, Puleo E, Calafato S, Cornelius C et al. Oxidative stress and cellular stress response in diabetic nephropathy. Cell Stress Chaperones. 2007;12:299-306.
  • 51. Goraca A, Ciejka E, Piechota A. Effects of extremely low frequency magnetic field on the parameters of oxidative stress in heart. J Physiol Pharmacol. 2010;61:333-8.
  • 52. Obezite ve Tip 2 Diyabet Available from: http://beslenme.gov.tr/content/files/arastirmalar/uyelik/beslenmebilgiserisi /Kitaplar/Obezite ve tip 2 Diyabet Obezite Tedavi Kilavuzu ve Yaşam Tarzı Önerileri. Available from: http://www.turkendokrin.org/files/pdf/Obezite.pdf
  • 53. Ükinç K, Gürlek A, Umsan A. Yeni anti-diyabetik ilaçlar. Hacettepe Tıp Dergisi. 2007;38:113-20.
  • 54. Şener A, Temiz A, Toğay SÖ, Bağcı U. Çeşitli prebiyotiklerin Bifidobacterium animalis subsp. lactis Bb-12’nin gelişimi ve asitlik geliştirme özelliği üzerine in vitro etkileri. Erzurum, Türkiye 10. Gıda Kongresi, 2008.
  • 55. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metab. 2012;61:160-74.
  • 56. Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, GilA. Effects of probiotics and synbiotics on obesity, insülin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Sci. 2016;17:928.
  • 57. Lei K, Li YL, Wang Y, Wen J, Wu HZ, Yu DY et al. Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice. J Zhejiang Univ Sci B. 2015;16:487-95.
  • 58. Zhang Q, Wu Y, Fei X. Effect of probiotics on glucose metabolism in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Medicina (Kaunas). 2016;52:28-34.
  • 59. Gomes AC, Bueno AA, de Souza RG, Mota JF. Gut microbiota, probiotics and diabetes. Nutr J. 2014;17:60.
  • 60. Bomhof MR, Saha DC, Reid DT, Paul HA, Reimer RA. Combined effects of oligofructose and Bifidobacterium animalis on gut microbiota and glycemia in obese rats. Obesity (Silver Spring). 2014;22:763-71.
  • 61. Mohammadi Sartang M, Mazloomi SM, Tanideh N, Rezaian Zadeh A. The effects of probiotic soymilk fortified with omega3 on blood glucose, lipid profile, hematological and oxidative stress and inflammatory parameters in streptozotocin nicotinamide-induced diabetic rats. J Diabetes Res. 2015;2015.
  • 62. Salazar MR, Carbajal HA, Espeche WG, Aizpurúa M, Maciel PM, Reaven GM. Identification of cardiometabolic risk: visceral adiposity index versus triglyceride/HDL cholesterol ratio. Am J Med. 2014;12:152-7.
  • 63. Mohammadi-Sartang M, Mazloom Z, Sherafatmanesh S, Ghorbani M, Firoozi D. Effects of supplementation with quercetin on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2017;71:1033-9.
  • 64. Golay A, Felber JP, Meyer HU, Curchod B, Maeder E, Jéquier E. Study on lipid metabolism in obesity diabetes. Metabolism. 1984;33:111-6.
  • 65. Margaret J. Hill, David Metcalfe, Philip G. McTernan. Obesity and diabetes: lipids, ‘nowhere to run to'. Clinical Science. 2008;116:113-23.
  • 66. Davì G, Falco A, Patrono C. Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal. 2005;7:256-68.
  • 67. Felber JP, Ferrannini E, Golay A, Meyer HU, Theibaud D, Curchod B, Maeder E et al. Role of lipid oxidation in pathogenesis of insülin resistance of obesity and type II diabetes. Diabetes. 1987;36:1341-50.
  • 68. Kumawat M , Sharma TK, Singh I, Singh N, Ghalaut VS, Shankar V et al. Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci. 2013;5:213–9.
  • 69. Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12:5-18.
  • 70. Markov MS. Effects of electromagnetic fields on biological systems. Electromagn Biol Med. 2013;32:121-2.
  • 71. WHO, World Health Organization Diabetes 2016. Available from: http://www.who.int/diabetes. 72. Sisken BF, Walker J, Orgel M. Prospects on clinical application of electrical stimulation for nerve regeneration. J Cellular Biochem. 1993;52:404-9.
  • 73. Mert T, Gunay I, Gocmen C, Kaya M, Polat S. Regenerative effects of pulsed magnetic field on injured peripheral nerves. Alternative Ther Health Med. 2006;12:42-9.
  • 74. Mert T, Gunay I, Ocal I. Neurobiological effects of pulsed magnetic field on diabetes-induced neuropathy. Bioelectromagnetics. 2010;31:39-47.
  • 75. Ocal I, Gunay I. The effects of chronic ac magnetic field on contraction and relaxation of isolated thoracic aorta rings of healthy and diabetic rats. Brazilian Archives of Biology and Technology. 2004;47:545-50.
  • 76. Sakurai T, Koyama S, Komatsubara Y, Jin W, Miyakoshi J. Decrease in glucose-stimulated insülin secretion ollowing exposure to magnetic fields. Biochem Biophys Res Commun. 2005;332:28-32
  • 77. Sakurai T, Yoshimoto M, Koyama S, Miyakoshi J. Exposure to extremely low frequency magnetic fields affectsinsülin-secreting cells. Bioelectromagnetics. 2008;29:118-24.
  • 78. Pall ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 2013;17:958-65.
  • 79. Blank M. Protein and DNA reactions stimulated by electromagnetic fields. Electromagn Biol Med. 2008;27:3-23.
  • 80. Zheng Y, Dou JR, Gao Y, Dong L, Li G. Effects of 15 Hz square wave magnetic fields on the voltage-gated sodium and potassium channels in prefrontal cortex pyramidal neurons. Int J Radiat Biol. 2017;93:449-55.
  • 81. Pall ML. Electromagnetic field activation of voltage-gated calcium channels: role in therapeutic effects: Electromag. Biol Med. 2014;33:251.
  • 82. Strauch B, Patel MK, Navarro JA, Berdichevsky M, Yu HL, Pilla AA. Pulsed magnetic fields accelerate cutaneous wound healing in rats. Plast Reconstr Surg. 2007;120:425-30.
  • 83. Prato FS, Desjardins-Holmes D, Keenliside LD, De Moor JM, Robertson JA, Stodilka RZ et al. The detection threshold for extremely low frequency magnetic fields may be below 1000 nT-Hz in mice. Bioelectromagnetics. 2011;32:561-9.
  • 84. Coulton LA, Barker AT, Van Lierop JE, Walsh MP. The effect of static magnetic fields on the rate of calcium/calmodulindependent phosphorylation of myosin light chain. Bioelectromagnetics. 2000;21:189-96.
  • 85. Laitl-Kobierska A, Cieślar G, Sieroń A,Grzybek H.I nfluence of alternating extremely low frequency ELF magnetic field on structure and function of pancreas in rats. Bioelectromagnetics. 2002;23:49-58.
  • 86. Ocal I, Atilla G. Changes in enzyme levels and serum ion concentrations in diabetic rats exposed to low frequency magnetic field. FEBS Journal. 2006;273:200-1.
  • 87. Ocal I, Kalkan T, Gunay I. Effects of alternating magnetic field on the metabolism of the healthy and diabetic organisms. Braz Arch. Biol. Technol. 2008;51:523-30.
  • 88. Yılmaz MB, Öcal I, Akbal E, Mert T, Tufan T, Cömertpay G et al. Diyabet indüklenmiş sıçan aortası ATP'ye duyarlı potasyum kanallarının, Kir 6.1 ve Kir 6.2, pulslu manyetik alan tedavisi ile regülasyonu. Çukurova Medical Journal (Çukurova Üniversitesi Tıp Fakültesi Dergisi). 2013;38:15-21.
  • 89. Wróbel MP, Szymborska-Kajanek A, Wystrychowski G, Biniszkiewicz T, Sieroń-Stołtny K, Sieroń A et al. Impact of low frequency pulsed magnetic fields on pain intensity, quality of life and sleep disturbances in patients with painful diabetic polyneuropathy. Diabetes Metab. 2008;31:349-54.
  • 90. Graak V, Chaudhary S, Bal BS, Sandhu JS. Evaluation of the efficacy of pulsed electromagnetic field in the management of patients with diabetic polyneuropathy. Int J Diabetes Dev Ctries. 2009;29:56-61.
  • 91. Lei T, Jing D, Xie K, Jiang M, Li F, Cai J et al. Therapeutic effects of 15 Hz pulsed electromagnetic field on diabetic peripheral neuropathy in streptozotocin-treatedrats. Plos One. 2013;8.
  • 92. Mert T, Gunay I, Gocmen C, Kaya M, Polat S. Regenerative effects of pulsed magnetic field on injured peripheral nerves. Alternative Ther Health Med. 2006;12:42-9.
  • 93. Mert T, Gunay I, Ocal I. Neurobiological effects of pulsed magnetic field on diabetes-induced neuropathy. Bioelectromagnetics. 2010;31:39-47.
  • 94. Mert T, Gisi G, Celik A, Baran F, Uremis MM, Gunay I. Frequency-ependent effects of sequenced pulsed magneticfield on experimental diabetic neuropathy. Int J Radiat Biol. 2015;91:833-42.
  • 95. Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med. 2012;18:59-68.
  • 96. Erbay E, Babaev VR, Mayers JR, Makowski L, Charles KN, Snitow ME et al. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat Med. 2009;15:1383-91.