Kalıtımsal Voltaj Kapılı Sodyum Kanalopatileri

Membran potansiyelindeki değişikliklere bağlı olarak açılıp kapanan iyon kanal ailesi grubundan olan voltaj kapılı sodyum kanalları (VKSK), hücre içine seçilimli bir şekilde Na+ iyon geçişini gerçekleştirerek uyarılabilir hücrelerde iletimin ana aktörü olan aksiyon potansiyellerinin oluşum ve yayılımından sorumludurlar. Kanal bu özelliği sebebiyle nöronal uyarım, kas kasılması, nörotransmiter salınımı gibi fizyolojik aktivitelerde oldukça önemli rol oynar. Dolayısıyla VKSK proteinin voltaj-bağımlı kapılanma ve filtre yapısı gibi fonksiyonel özellik gösteren bölgelerinde meydana gelen kalıtımsal mutasyonlar kanalın biyofiziksel özelliklerini değiştirirler ve kanal protein izoformlarının lokalize olduğu bölgeler ile ilişkili olarak merkezi sinir sistemi, periferik sinir sistemi, iskelet-kas sistemi ve kardiyovasküler sistem hastalıklarına yol açabilmektedirler. Bu derlemede, VKSK protein izoformlarında meydana gelen mutasyonlar ve ilişkili hastalıklar belirtilmiş ve ayrıca bu değişikliklerin kanal fonksiyonuna olan etkileri biyofiziksel açıdan detaylıca değerlendirilmiştir. Hastalıklar açısından risk faktörü olan mutasyonların ve bu mutant varyasyonlar sonucunda VKSK’ daki mekanistik değişikliklerin belirtilmesi, hedef odaklı tedavi yöntemlerinin geliştirilmesi ve yeni tedavi metotların oluşturulması bakımından oldukça büyük önem taşımaktadır.

Inherited Voltage Gated Sodıum Channelopathies

Voltage-gated sodium channels (VGSC), one of the members of ion channel family which can open or close due tothe changes in membrane potentials, provide influx of Na+ selectively and this way, they are responsible for initiationand propagation of action potential which is a key element of cellular information in excitable cells. The channel playsan important role in physiological activities such as neuronal stimulation, muscle contraction and neurotransmitterrelease because of its physiological features. Therefore, inherited mutations in functional locations of VGSC proteinsuch as voltage dependent gating and filter structures, change the biophysical properties of the channel and may causediseases at where the channel protein isoforms located such as central nervous system, peripheral nervous system,skeletal muscle system and cardiovascular system. In this review, mutations in VGSC protein isoforms and relateddiseases are defined. Moreover, effects of that changes to the channel function are evaluated biophysically in detail. Itis notably valuable to define mutations which are risk factors for diseases, and also mechanistically changes caused bythose mutant variants in VGSC, in order to develop target-specific treatment and new methods.

___

  • 1. Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev. 2005;57:397-409.
  • 2. Catterall WA. Structure and function of voltage-gated sodium channels at atomic resolution. Exp Physiol. 2014;99:35-51.
  • 3. Black JA, Waxman SG. Noncanonical roles of voltage-gated sodium channels. Neuron. 2013;80:280-291.
  • 4. Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A et al. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol. 2016;7:121.
  • 5. Wang T, Wehrens XH. Enhanced impact of SCN5A mutation associated with long QT syndrome in fetal splice isoform. Heart Rhythm. 2012;9:598-599.
  • 6. Coskun C. Kerevitte (Astacus Leptodactylus) Varsayılan Voltaj Kapılı Sodyum Kanalı Alfa Alt Birimi Geninin Klonlanması Ve Kanal Proteininin Moleküler Özelliklerinin Belirlenmesi (tez). Ankara, Çukurova Üniversitesi. 2016.
  • 7. Siegelbaum S, Koester J. İon Channels. InPrinciples of Neural Sciences. 5th ed. (Eds Kandel E, Schwartz J, Jessel T, Siegelbaum S, Hudspeth A):100-125. New York, McGraw-Hill, 2012.
  • 8. Yu FH, Catterall WA. Overview of the voltage-gated sodium channel family. Genome Biol. 2003;4:207.
  • 9. Savio-Galimberti E, Gollob MH, Darbar D. Voltage-gated sodium channels: biophysics, pharmacology, and related channelopathies. Front Pharmacol. 2012;3:124.
  • 10. Goldin AL. Evolution of voltage-gated Na(+) channels. J Exp Biol. 2002;205:575-584.
  • 11. Brackenbury WJ, Isom LL. Voltage-gated Na+ channels: potential for beta subunits as therapeutic targets. Expert Opin Ther Targets. 2008;12:1191-1203.
  • 12. Hull JM, Isom LL. Voltage-gated sodium channel beta subunits: The power outside the pore in brain development and disease. Neuropharmacology. 2018;132:43-57.
  • 13. O'Malley HA, Isom LL. Sodium channel beta subunits: emerging targets in channelopathies. Annu Rev Physiol. 2015;77:481- 504.
  • 14. Abriel H, Zaklyazminskaya EV. Cardiac channelopathies: genetic and molecular mechanisms. Gene. 2013;517:1-11.
  • 15. Vernino S. Autoimmune and paraneoplastic channelopathies. Neurotherapeutics. 2007;4:305-314.
  • 16. Ryan DP, Ptacek LJ. Episodic neurological channelopathies. Neuron. 2010;68:282-292.
  • 17. Richichi C, Brewster AL, Bender RA, Simeone TA, Zha Q, Yin HZ, Weiss JH, Baram TZ. Mechanisms of seizure-induced 'transcriptional channelopathy' of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. Neurobiol Dis. 2008;29:297-305.
  • 18. Waxman SG. Acquired channelopathies in nerve injury and MS. Neurology. 2001;56:1621-1627.
  • 19. Waxman SG. Transcriptional channelopathies: an emerging class of disorders. Nat Rev Neurosci. 2001;2:652-659.
  • 20. Kleopa KA. Autoimmune channelopathies of the nervous system. Curr Neuropharmacol. 2011;9:458-467.
  • 21. Marakhonov AV, Varenikov GG, Skoblov MY. Sodium Channelopathies: From Molecular Physiology towards Medical Genetics. Russian Journal of Genetics. 2018;54:45-56.
  • 22. Celesia GG. Disorders of membrane channels or channelopathies. Clinical Neurophysiology. 2001;112:2-18.
  • 23. Lossin C. A catalog of SCN1A variants. Brain Dev. 2009;31:114-130.
  • 24. Spampanato J, Kearney JA, de Haan G, McEwen DP, Escayg A, Aradi I et al. A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for beta subunit interaction. J Neurosci. 2004;24:10022-10034.
  • 25. Berkovic SF, Heron SE, Giordano L, Marini C, Guerrini R, Kaplan RE et al. Benign familial neonatal-infantile seizures: Characterization of a new sodium channelopathy. Annals of Neurology. 2004;55:550-557.
  • 26. Misra SN, Kahlig KM, George AL, Jr. Impaired NaV1.2 function and reduced cell surface expression in benign familial neonatal-infantile seizures. Epilepsia. 2008;49:1535-1545.
  • 27. Ogiwara I, Ito K, Sawaishi Y, Osaka H, Mazaki E, Inoue I et al. De novo mutations of voltage-gated sodium channel alphaII gene SCN2A in intractable epilepsies. Neurology. 2009;73:1046-1053.
  • 28. Shi X, Yasumoto S, Nakagawa E, Fukasawa T, Uchiya S, Hirose S. Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome. Brain Dev. 2009;31:758-762.
  • 29. Shi X, Yasumoto S, Kurahashi H, Nakagawa E, Fukasawa T, Uchiya S et al. Clinical spectrum of SCN2A mutations. Brain Dev. 2012;34:541-545.
  • 30. Sugawara T, Tsurubuchi Y, Agarwala KL, Ito M, Fukuma G, Mazaki-Miyazaki E et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci U S A. 2001;98:6384-6389.
  • 31. Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M et al. Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry. 2003;8:186-194.
  • 32. Holland KD, Kearney JA, Glauser TA, Buck G, Keddache M, Blankston JR et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett. 2008;433:65-70.
  • 33. Estacion M, Gasser A, Dib-Hajj SD, Waxman SG. A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons. Exp Neurol. 2010;224:362-368.
  • 34. Vanoye CG, Gurnett CA, Holland KD, George AL, Jr., Kearney JA. Novel SCN3A variants associated with focal epilepsy in children. Neurobiol Dis. 2014;62:313-322.
  • 35. Lamar T, Vanoye CG, Calhoun J, Wong JC, Dutton SBB, Jorge BS et al. SCN3A deficiency associated with increased seizure susceptibility. Neurobiol Dis. 2017;102:38-48.
  • 36. Chen YJ, Shi YW, Xu HQ, Chen ML, Gao MM, Sun WW et al. Electrophysiological Differences between the Same Pore Region Mutation in SCN1A and SCN3A. Molecular neurobiology. 2015;51:1263-1270.
  • 37. Ralph J, Ptáček L. Chapter 98 - Muscle Channelopathies: Periodic Paralyses and Nondystrophic Myotonias. InRosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease (Fifth Edition). (Eds Rosenberg RN, Pascual JM):1177- 1189. Boston, Academic Press, 2015.
  • 38. Ptacek LJ, George AL, Jr., Griggs RC, Tawil R, Kallen RG, Barchi RL et al. Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell. 1991;67:1021-1027.
  • 39. Vicart S, Sternberg D, Fontaine B, Meola G. Human skeletal muscle sodium channelopathies. Neurol Sci. 2005; 26:194-202.
  • 40. Jarecki BW, Piekarz AD, Jackson JO, 2nd, Cummins TR. Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. J Clin Invest. 2010;120:369-378.
  • 41. Bulman DE, Scoggan KA, van Oene MD, Nicolle MW, Hahn AF, Tollar LL et al. A novel sodium channel mutation in a family with hypokalemic periodic paralysis. Neurology. 1999;53:1932-1936.
  • 42. Jurkat-Rott K, Mitrovic N, Hang C, Kouzmekine A, Iaizzo P, Herzog J et al. Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc Natl Acad Sci U S A. 2000;97:9549- 9554.
  • 43. Remme CA. Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. J Physiol. 2013;591:4099-4116.
  • 44. Viswanathan PC, Balser JR. Inherited Sodium Channelopathies A Continuum of Channel Dysfunction. Trends in Cardiovascular Medicine. 2004;14:28-35.
  • 45. Amin AS, Asghari-Roodsari A, Tan HL. Cardiac sodium channelopathies. Pflugers Arch. 2010;460:223-237.
  • 46. Pérez-Riera AR, Barbosa-Barros R, Daminello Raimundo R, da Costa de Rezende Barbosa MP, Esposito Sorpreso IC, de Abreu LC. The congenital long QT syndrome Type 3: An update. Indian Pacing Electrophysiol J. 2018;18:25-35.
  • 47. Loussouarn G, Sternberg D, Nicole S, Marionneau C, Le Bouffant F, Toumaniantz G et al. Physiological and Pathophysiological Insights of Nav1.4 and Nav1.5 Comparison. Front Pharmacol. 2015;6:314.
  • 48. Zimmer T, Surber R. SCN5A channelopathies--an update on mutations and mechanisms. Progress in biophysics and molecular biology. 2008;98:120-136.
  • 49. McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. The Journal of clinical investigation. 2013;123:19-26.
  • 50. Zaklyazminskaya E, Dzemeshkevich S. The role of mutations in the SCN5A gene in cardiomyopathies. Biochim Biophys Acta. 2016; 1863:1799-1805.
  • 51. Gosselin-Badaroudine P, Moreau A, Chahine M. Nav 1.5 mutations linked to dilated cardiomyopathy phenotypes: Is the gating pore current the missing link? Channels (Austin). 2014;8:90-94.
  • 52. Savio-Galimberti E, Darbar D. Atrial Fibrillation and SCN5A Variants. Card Electrophysiol Clin. 2014;6:741-748.
  • 53. Li Q, Huang H, Liu G, Lam K, Rutberg J, Green MS et al. Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing. Biochemical and biophysical research communications. 2009;380:132-137.
  • 54. Ellinor PT, Nam EG, Shea MA, Milan DJ, Ruskin JN, MacRae CA. Cardiac sodium channel mutation in atrial fibrillation. Heart Rhythm. 2008;5:99-105.
  • 55. Makiyama T, Akao M, Shizuta S, Doi T, Nishiyama K, Oka Y et al. A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. Journal of the American College of Cardiology. 2008;52:1326-1334.
  • 56. Butters TD, Aslanidi OV, Inada S, Boyett MR, Hancox JC, Lei M et al. Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circulation research. 2010;107:126-137.
  • 57. Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. Journal of medical genetics. 2004;41:171-174.
  • 58. Cummins TR, Dib-Hajj SD, Waxman SG. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci. 2004;24:8232-8236.
  • 59. Waxman SG. Painful Na-channelopathies: an expanding universe. Trends Mol Med. 2013;19:406-409.
  • 60. Waxman SG, Merkies ISJ, Gerrits MM, Dib-Hajj SD, Lauria G, Cox JJ et al. Sodium channel genes in pain-related disorders: phenotype-genotype associations and recommendations for clinical use. The Lancet Neurology. 2014;13:1152-1160.
  • 61. Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron. 2006;52:767-774.
  • 62. Faber CG, Hoeijmakers JGJ, Ahn H-S, Cheng X, Han C, Choi J-S et al. Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Annals of Neurology. 2012;71:26-39.
  • 63. Wallace RH, Wang DW, Singh R, Scheffer IE, George AL, Jr., Phillips HA et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nature genetics. 1998;19:366-370.
  • 64. Patino GA, Claes LR, Lopez-Santiago LF, Slat EA, Dondeti RS, Chen C et al. A functional null mutation of SCN1B in a patient with Dravet syndrome. J Neurosci. 2009;29:10764-10778.
  • 65. Ogiwara I, Nakayama T, Yamagata T, Ohtani H, Mazaki E, Tsuchiya S et al. A homozygous mutation of voltage-gated sodium channel beta(I) gene SCN1B in a patient with Dravet syndrome. Epilepsia. 2012;53:e200-203.
  • 66. Bao Y, Isom LL. NaV1.5 and Regulatory b Subunits in Cardiac Sodium Channelopathies. Card Electrophysiol Clin. 2014;6:679- 694.
  • 67. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott J-J et al. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. The Journal of clinical investigation. 2008;118:2260-2268.
  • 68. Hu D, Barajas-Martinez H, Burashnikov E, Springer M, Wu Y, Varro A et al. A mutation in the beta 3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype. Circulation Cardiovascular genetics. 2009;2:270-278.
  • 69. Riuro H, Beltran-Alvarez P, Tarradas A, Selga E, Campuzano O, Verges M et al. A missense mutation in the sodium channel beta2 subunit reveals SCN2B as a new candidate gene for Brugada syndrome. Hum Mutat. 2013;34:961-966.
  • 70. Olesen MS, Jespersen T, Nielsen JB, Liang B, Moller DV, Hedley P et al. Mutations in sodium channel beta-subunit SCN3B are associated with early-onset lone atrial fibrillation. Cardiovascular research. 2011;89:786-793.
  • 71. Li RG, Wang Q, Xu YJ, Zhang M, Qu XK, Liu X et al. Mutations of the SCN4B-encoded sodium channel beta4 subunit in familial atrial fibrillation. International journal of molecular medicine. 2013;32:144-150.
  • 72. Riuro H, Campuzano O, Arbelo E, Iglesias A, Batlle M, Perez-Villa F et al. A missense mutation in the sodium channel beta1b subunit reveals SCN1B as a susceptibility gene underlying long QT syndrome. Heart Rhythm. 2014;11:1202-1209.
  • 73. Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B et al. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation. 2007;116:134-142.
  • 74. Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, An-Gourfinkel I et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nature genetics. 2000;24:343-345.
  • 75. Escayg A, Heils A, MacDonald BT, Haug K, Sander T, Meisler MH. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus--and prevalence of variants in patients with epilepsy. Am J Hum Genet. 2001;68:866-873.
  • 76. Wallace RH, Scheffer IE, Barnett S, Richards M, Dibbens L, Desai RR et al. Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet. 2001;68:859-865.
  • 77. Barela AJ, Waddy SP, Lickfett JG, Hunter J, Anido A, Helmers SL et al. An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability. J Neurosci. 2006;26:2714-2723.
  • 78. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet. 2001;68:1327-1332.
  • 79. Claes L, Ceulemans B, Audenaert D, Smets K, Lofgren A, Del-Favero J et al. De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum Mutat. 2003;21:615-621.
  • 80. Zucca C, Redaelli F, Epifanio R, Zanotta N, Romeo A, Lodi M et al. Cryptogenic epileptic syndromes related to SCN1A: twelve novel mutations identified. Archives of neurology. 2008;65:489-494.
  • 81. Ptacek LJ, George AL, Jr., Barchi RL, Griggs RC, Riggs JE, Robertson M et al. Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita. Neuron. 1992;8:891-897.
  • 82. Bendahhou S, Cummins TR, Kula RW, Fu YH, Ptacek LJ. Impairment of slow inactivation as a common mechanism for periodic paralysis in DIIS4-S5. Neurology. 2002;58:1266-1272.
  • 83. McClatchey AI, McKenna-Yasek D, Cros D, Worthen HG, Kuncl RW, DeSilva SM et al. Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel. Nature genetics. 1992;2:148-152.
  • 84. Lehmann-Horn F, Rüdel R, Ricker K. Non-dystrophic myotonias and periodic paralyses: A European Neuromuscular Center Workshop held 4–6 October 1992, Ulm, Germany. Neuromuscular Disorders. 1993;3:161-168.
  • 85. Okuda S, Kanda F, Nishimoto K, Sasaki R, Chihara K. Hyperkalemic periodic paralysis and paramyotonia congenita--a novel sodium channel mutation. Journal of neurology. 2001;248:1003-1004.
  • 86. Wang Q, Shen J, Li Z, Timothy K, Vincent GM, Priori SG et al. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Human molecular genetics. 1995;4:1603-1607.
  • 87. Abriel H, Cabo C, Wehrens XH, Rivolta I, Motoike HK, Memmi M et al. Novel arrhythmogenic mechanism revealed by a long-QT syndrome mutation in the cardiac Na(+) channel. Circulation research. 2001;88:740-745.
  • 88. Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P et al. Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. The Journal of biological chemistry. 2001;276:30623-30630.
  • 89. Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7:33- 46.
  • 90. Wang DW, Viswanathan PC, Balser JR, George AL, Jr., Benson DW. Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation. 2002;105:341-346.
  • 91. Olson TM, Michels VV, Ballew JD, Reyna SP, Karst ML, Herron KJ et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. Jama. 2005;293:447-454.
  • 92. Cheng J, Morales A, Siegfried JD, Li D, Norton N, Song J et al. SCN5A rare variants in familial dilated cardiomyopathy decrease peak sodium current depending on the common polymorphism H558R and common splice variant Q1077del. Clin Transl Sci. 2010;3:287-294.
  • 93. McNair WP, Sinagra G, Taylor MR, Di Lenarda A, Ferguson DA, Salcedo EE et al. SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. Journal of the American College of Cardiology. 2011;57:2160-2168.
  • 94. Smits JP, Koopmann TT, Wilders R, Veldkamp MW, Opthof T, Bhuiyan ZA et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. Journal of molecular and cellular cardiology. 2005;38:969-981.
  • 95. Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest. 2003;112:1019-1028.
  • 96. Michiels JJ, te Morsche RH, Jansen JB, Drenth JP. Autosomal dominant erythermalgia associated with a novel mutation in the voltage-gated sodium channel alpha subunit Nav1.7. Archives of neurology. 2005;62:1587-1590.
  • 97. Han C, Rush AM, Dib-Hajj SD, Li S, Xu Z, Wang Y et al. Sporadic onset of erythermalgia: a gain-of-function mutation in Nav1.7. Ann Neurol. 2006;59:553-558.
  • 98. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444:894-898.
  • 99. Nilsen KB, Nicholas AK, Woods CG, Mellgren SI, Nebuchennykh M, Aasly J. Two novel SCN9A mutations causing insensitivity to pain. Pain. 2009;143:155-158.
  • 100. Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clinical genetics. 2007;71:311-319.
  • 101. Zhang XY, Wen J, Yang W, Wang C, Gao L, Zheng LH et al. Gain-of-function mutations in SCN11A cause familial episodic pain. American journal of human genetics. 2013;93:957-966.
  • 102. Watanabe H, Darbar D, Kaiser DW, Jiramongkolchai K, Chopra S, Donahue BS et al. Mutations in sodium channel beta1- and beta2-subunits associated with atrial fibrillation. Circulation Arrhythmia and electrophysiology. 2009;2:268-275