İlaç Taşıyıcı Nanosistemler

Nanoteknoloji alanındaki gelişmeler, bilinen teknolojilerle birleştiğinde birçok avantaj ve yenilik ortaya çıkmaktadır.Nanotaşıyıcılar, belki de bu yeniliklerin en göz alıcılarından biridir. Hücre içine etkin şekilde giriş için etkili ve uygunbir taşıyıcı sistemin kullanılmasına ihtiyaç vardır. Bu işlemi gerçekleştirmek için en uygun materyal nanopartiküllerdir.Nanopartiküllerin hücre zarından kolay geçebilme yeteneği, DNA veya RNA oligonükleotidleri gibi biyomoleküllerintaşıyıcıları olarak birçok alternatif yönteme fayda sağlamaktadır. Kalsiyum fosfatlar, biyolojik sistemlerde yüksekbiyobozunurlukları ve biyouyumlulukları, kolay hazırlanabilmeleri, DNA ve RNA için yüksek kimyasal afiniteleri gibiavantajları nedeniyle nanotaşıyıcılar olarak kullanılabilirler. Bu şekilde, etkin maddenin kontrollü salımı sağlanabilir.Böylece etkin maddelerin spesifik bir bölgeye hedeflendirilmesi sağlanabilir, etkin maddelerin çözünürlüğü,biyoyararlanımı artırılabilir.Günümüzde, bu çözümlerden birisi olarak nanotaşıyıcılar önemli bir yere sahip gibi görünmektedir. Nanotaşıyıcılar,terapötik etkinliğin ve güvenliğin geliştirilmesi bakımından ümit vericidir. Hastalıkların tedavisinde nanotaşıyıcıkullanımının, ilaç etkinliğinin iyileştirmesi ve normal dokulardaki toksisitesinin azaltılması için etkili bir alternatifyöntemin kullanılması potansiyeline sahip olduğu görülmektedir.

Drug Delivery Nanosystems

Developments in nanotechnology, when combined with known technology, bring out many advantages and innovations. Nanocarrier are perhaps one of the most eye-catching of these innovations. There is a need for the use of an effective and suitable carrier system for efficient entry into the cell. The most suitable material to perform this process is nanoparticles. The ability of nanoparticles to pass easily through the cell membrane has benefited many alternative methods as carriers of biomolecules such as DNA or RNA oligonucleotides. Calcium phosphates can be used as nanocarrier when compared to other nanoparticles because of their high biodegradability in biological systems and their advantages such as biocompatibility, easy preparation, and high chemical affinities for DNA and RNA. In this way, controlled release of the active substance can be achieved. Thus, targeting of active ingredients to a specific site of the body can be achieved as well as the solubility and bioavailability of the active ingredients can be increased. Nowadays, as one of these solutions, nanostructures it seems to have an important place. Nanocarriers are promising in terms of improving therapeutic efficacy and safety. Nanocarrier of use in the treatment of diseases, treatment of drug effectiveness and utilization of effective alternative method to reduce toxicity in normal tissues seems to have the potential.

___

  • 1. Tartis M. Nanotechnology in nuclear medicine. The University of New Mexico Health Sciences Center College of Pharmacy is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. Program No. 039-000-09-147-H04-P 3.0. Initial release date: 4/8/2009.
  • 2. Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roek J, Ryder J, Smith P. A new class of polymers: starburstdendritic macromolecules. Polymer Journal. 1985;17:117-16.
  • 3. Kocaefe Ç. Nanotıp: Yaşam Bilimlerinde Nanoteknoloji Uygulamaları, H.Ü. Tıp Dergisi. 2007;38:33-6.
  • 4. Boas U, Christensen JB, Heegaard PMH. Dendrimers: design, synthesis and chemical properties. Dendrimers in medicine and biotechnology: new molecular tools. 1st ed. Dorset; Henry Ling Ltd. 2006;1-27.
  • 5. D’Emanuele A, Attwood D. Dendrimer–drug interactions. Adv. Drug Deliv. Rev. 2005;57:2147-16.
  • 6. Zarbin M.A, Montemagno C, Leary J.F, Ritch R. Nanotechnology in Ophthalmology, Canadian Journal of Ophthalmology. 2010;45:457-10.
  • 7. Önyüksel H, Çomoğlu T. Nanotaşıyıcılarda Hedeflendirme. Zırh-Gürsoy A. Nanofarmasötikler ve Uygulamaları. Kontrollü Salım Sistemleri Derneği, İstanbul. 2014;211-16.
  • 8. Singh R, Lillard J.J.W. Nanoparticle Based Drug Delivers. Experimental and Molecular Pathology. 2009;215-9.
  • 9. Patri AK, Kukowska-Latallo JF, Baker JR. Targeted drug delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Advanced Drug Delivery Reviews. 2005;57:2203-12.
  • 10. Cho K, Wang X, Nie S, Chen Z, Shin D.M. Therapeutic Nanoparticles for Drug Delivery in Cancer, Cancer Nanotherapeutics for Drug Delivery. 2008;14:1.
  • 11. Martinez-Carmona M, Colilla M, Vallet-Regi M. Smart Mesoporous Nanomaterials For Antitumor Therapy, Manomaterials. 2015:5;1906-32.
  • 12. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European Juornal of Pharmaceutics and Biopharmaceutics. 2015;52-28.
  • 13. Esfand R, Tomalia DA, Beezer AE, Mitchell JC, Hardy M, Orford C. Dendripore and dendrilock concepts new controlled delivery strategies. Polymer Preprints. 2000;41:1324-2.
  • 14. Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine. 2011;6:2963-9.
  • 15. Tyrrell ZL, Shen Y, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polym Sci 2010;35:1128-43.
  • 16. Groneberg DA, Giersig M, Welte T, Pison U. Nanoparticle-based diagnosis and therapy. Curr Drug Targets. 2006;7:643-8.
  • 17. Cheng Y, Xu Z, Ma M, Xu T. Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 2008;97:123-43.
  • 18. Edwards KA, Baeumner AJ. Liposomes in analyses. Talanta 2006;68:1421-31.
  • 19. Mukherjee S, Ray S, Thakur R. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences. 2009;71:349.
  • 20. Le Goff A, Holzinger M, Cosnier S. Enzymatic biosensors based on SWCNT-conducting polymer electrodes. Analyst. 2011;136:1279-87.
  • 21. Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K. Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol. 2011;63:141-63.
  • 22. Çelebi N. Nanojeller. Zırh-Gürsoy A. Nanofarmasötikler ve Uygulamaları, Kontrollü Salım Sistemleri Derneği, İstanbul. 2014;89-12.
  • 23. Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces. 2015;126:631-48.
  • 24. Vladimir P. Multifunctional nanocarriers. Adv Drug Deliv Rev 2006;58:1532-55.
  • 25. Şengel-Türk C.T, Hasçiçek C. Polimerik Nanopartiküler İleç Taşıyıcı Sistemlerde Yüzey Modifikasyonu. Ankara Eczacılık Fakültesi Dergisi. 2009;137-18.
  • 26. Zırh-Gürsoy A. Nanofarmasötikler ve Uygulamaları, Kontrollü Salım Sistemleri Derneği, İstanbul. 2014;1-7.
  • 27. Kushwaha SKS, Ghoshal S, Rai AK, Singh S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Braz J Pharm Sci 2013;49:629-43.
  • 28. Ji SR, Liu C, Zhang B, Yang F, Xu J, Long J et al. Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta. 2010;1806:29-7.
  • 29. Suzuki M, Piao CQ, Zhao YL, Hei TK. Karyotype analysis of tumorigenic human bronchial epithelial cells transformed by chrysolite asbestos using chemically induced premature chromosome condensation technique. Int J Mol Med. 2001;8:43-7.