Adli Tıpta DNA Tipleme Teknolojilerinin Uygulanması

Nükleer DNA markırları suç araştırmaları ve babalık testlerinde sıkça kullanılmaktadır. Babalık testinin yorumlaması Kısa Bitişik Tekrarların (Short Tandem Repeats) gerçek Mendeliyan düzeninde kalıtıldığı ve allelik değişkenlerin eş baskın doğasını tanımladığı gerçeğine dayanır. DNA mikrosatelitleri ya da kısa bitişik tekrarlar genom boyunca rastgele dağılmış ikili, üçlü, ya da dörtlü nukleotid ünitelerinin birbiri ardısıra tekrarlayan kısa serileridir. Bunlar kalıtılmış hastalaıkların tanısından DNA parmak izi tespiti ve babalık testi gibi adli tıp uygulamalarına kadar geniş bir uygulama alanı bulmuştur. Babalık testi uygulamalarındaki başarı kısa bitişik tekrarların yüksek oranda polimorfik olmakla birlikte aynı zamanda yeterince istikrarlı olup bir nesilden diğerine değişmeden kalıtılmasına bağlıdır.

Application of DNA Typing Technologies in Forensic Medicine

Nuclear DNA markers are widely used for crime investigation and paternity testing. Parentage testing interpretation relies on the fact that Short Tandem Repeats are inherited in a true Mendelian fashion and express a codominant nature of allelic variants. DNA microsatellites or Short Tandem Repeats are short, tandemly repeated sequences of a bi-, tri- or tetranucleotide unit with a random distribution throughout the genome. They have been used extensively in applications as diverse as diagnosis of inherited diseases and forensic medicine for DNA fingerprinting and parentage testing. The success of this last application is due to the fact that Short Tandem Repeats are highly polymorphic and, at the same time, they are sufficiently stable to be inherited unaltered from one generation to the next.

___

  • Mayr WR. The HL-A system in paternity testing (Das HLA System in der Paternitatsserologie). Z Rechtsmed. 1974; 75:81-103.
  • Kiuchi M. Application of the HLA system to forensic medicine--from serology to DNA polymorphism. Nihon Hoigaku Zasshi. 2002; 56:229-35.
  • Jeffreys AJ, Wilson V, Thein SL. Individual specific finger prints of human DNA. Nature.1985; 316:76-9.
  • Jeffreys AJ, Wilson V, Thein SL. Hypervariable mini satellite regions in human DNA. Nature.1985; 314:67-73.
  • Jeffreys AJ, Wilson V, Thein SL, Weatherall DJ, Ponder BA. DNA finger prints and segregation analysis of multiple markers in human pedigree . Am J Hum genet. 1986; 39:11-24.
  • Butler JM. Forensic DNA Typing Biology, Technology and Genetics of STR Markers, 2nd edition, London, Academic Press, 2005.
  • Venter JC. Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al. The sequence of the human genome. Science. 2001; 291:1304-51.
  • Waterston RH, Lindblad-Toh K, Bimey E, Rogers J, Brent FS,Collins FS et al. Initial sequencing and comparative analysis of the mouse genome.Nature. 2002; 420:520-62.
  • Goodwin W, Linacer A, Hadi S. An Introduction to Forensic Medicine. England, Wiley, 2007. Litt M, Luty JAA. hypervariable minisatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet. 1989; 44:397-401.
  • Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M et al. Variable number of tandem repeats (VNTR) markers for human gene mapping. Science.1987; 235:1616-22.
  • Beckman JS, Weber JL. Survey of human and rat microsatellites.Genomics.1992; 12:627-31. Jeffreys AJ, Tamaki K, MacLeod A, Monckton DG, Neil DL, Armour JAL. Complex gene conversion events in germline mutation at human minisatellites. Nat Genet.1994;. 6:136-45.
  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. U S A. 1994; 91: 3166
  • Jeffreys AJ, Brookfield JF, Semeonoff R. Positive identification of an immigration test-case using human DNA fingerprints. Nature.1985; 317:818-9.
  • Miller RD. Phillips MS, Jo I, Donaldson MA, Studebaker JF, Addelman N et al. High-density singlenucleotide polymorphism maps of the human genome. Genomics. 2005; 86:117-26.
  • Thorisson GA, Stein LD. The SNP Consortium website: past, present and future. Nucleic Acids Res. 2003; 31:124-7.