Adli Otopside İlaç İstismarını Belirlemek Amacıyla Kullanılan Yöntemler

Adli bilimlerde ölüm vakaları değerlendirilirken, ölüm nedenini ortaya çıkarmak için otopsi yapılmaktadır. Otopsi işlemisırasında öncelikle fiziksel ardından biyolojik ve kimyasal incelemeler yoluyla ölüm nedeni araştırılmaktadır. İlaçistismarına dayalı ölüm nedenleri içerisinde, ilaç etken maddelerinin kötü kullanılması veya keyif veren kimyasallarınaşırı kullanılması gibi nedenler vardır. Bu tip durumların saptanması için otopsi sırasında alınan örnekler analizedilebilmektedir. Analizler sonucunda toksik etki gösterecek bir kimyasalın tespit edilmesi için çeşitli yöntemlerkullanılmaktadır. Son yıllarda kullanılan konvansiyonel yöntemlere ek olarak yeni ve daha duyarlı yöntemlergeliştirilmektedir.

Methods for Determining Drug Abuse in Forensic Autopsy

In forensic science, autopsy is performed for revealing the cause of death. Cause of death is searched first by using physical, then biological and chemical investigation during an autopsy operation. Among causes of death due to drug exploitation are misuse of active ingredients of medicines or abuse of recreational drugs. To determine the cause of death, samples taken during an autopsy are analysed. Various conventional methods are used with these samples in order to determine the chemical with toxic effects. Recently, inaddition to conventional methods new and more sensitive methods are developed.

___

  • 1. Chamberlain J, Drugs in Biolgical Fluids, second ed., CRC Press, Boca Raton. 1995; 1–33.
  • 2. Mubhoff F, Daldrup T, Aderjan R, Meyer LV, Anlagen zu den Richtlinien zur Qualitätssicherung bei forensischtoxikologischen Untersuchungen. Toxichem. Krimtech. 2002;69:32-4.
  • 3. Plebani, M, Carraro P, Mistakes in a stat laboratory: types and frequency. Clin. Chem. 1997;43:1348-51.
  • 4. Bachs L, Mørland, Acute cardiovascular fatalities following cannabis use. Forensic Science International. 2001;124:200-3.
  • 5. Hartung B, Kauferstein S, Ritz-Timme S, Daldrup T, Sudden unexpected death under acute influence of cannabis. Forensic Science International. 2014; 237: 11-13.
  • 6. Skopp G, Preanalytic aspects in postmortem toxicology. Forensic science international. 2004;142:75-100.
  • 7. Drummer O H, Postmortem toxicology of drugs of abuse. Forensic science international. 2004;142:101-113.
  • 8. Centini F, Masti A, Comparini I B, Quantitative and qualitative analysis of MDMA, MDEA, MA and amphetamine in urine by head-space/solid phase micro-extraction (SPME) and GC/MS. Forensic science international. 1996;83:161-6.
  • 9. Wood M, Laloup M, Fernandez M D M R, Jenkins K M, Young M S, Ramaekers J G, Samyn N, Quantitative analysis of multiple illicit drugs in preserved oral fluid by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Forensic science international. 2005;150:227-38.
  • 10. Jannettol Paul J, Steven H W, Susan B G, Elvan Laleli-S, B. Charles S, Jeffrey M J, Pharmacogenomics as Molecular Autopsy for Postmortem Forensic Toxicology: Genotyping Cytochrome P450 2D6 for Oxycodone Cases. Journal of Analytical Toxicology. 2002;26.
  • 11. Fikiet M A, Khandasammy S R, Mistek E, Ahmed Y, Halámková L, Bueno J, Lednev I K, Surface enhanced Raman spectroscopy: A review of recent applications in forensic science. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018.
  • 12. KlineND, TripathiA, MirsafaviR, PardoeI, MoskovitsM, Meinhart C, Guicheteau JA, Christesen SD, Fountain AW, Optimization of surface-enhanced Raman spectroscopy conditions for implementation into a microfluidic device for drug detection Anal. Chem. 2016;88:10513-522.
  • 13. XuZ J, Jinag X, Wang K, Han A, Ameen I, Khan T, Chang GL, Large-area, uniform and low-cost dual-mode plasmonic nakedeye colorimetry and SERS sensor with handheld Raman spectrometer. Nano. 2016;8:6162-72.