Effects of Substitution of Fishmeal with Bambaranut Meal on Growth and Intestinal Microbiota of African Catfish (Clarias gariepinus)

Effects of Substitution of Fishmeal with Bambaranut Meal on Growth and Intestinal Microbiota of African Catfish (Clarias gariepinus)

Substitution of fishmeal with plant protein is trending but there had been no study ofits effects on catfish gut microbial communities. We made Five isonitrogenous(44.29±0.45%) and isoenergetic (2747.24±0.09 kcal) diets labelled as feed 1 (F1) tofeed 5 (F5). The feeds varied in composition of fishmeal (FM) with bambaranut meal(BNM), as: F1, 65:0, F2, 45:5, F3, 25:25, F4, 5:45, and F5, 0:65. There was a control dietF6. The diets were fed to Clarias gariepinus distributed into three replicate aquaria at15 fish per aquarium. Feed 4 (F4) had the best specific growth rate (SGR, 7.03±0.03%day-1), which was better than F3, with SGR, 6.77±0.08% day-1 and 65% fishmeal dietF1, with SGR 6.67±0.06% day-1(P

___

  • Ali, M.Z., & Jauncey, K. (2005). Approaches to optimizing dietary protein to energy ratio for African catfish Clarias gariepinus (Burchell, 1822). Aquaculture Nutrition, 11, 95–101
  • Austin, B. "The bacterial microflora of fish."The Scientific World Journal, 2(2002): 558-572.
  • Bakke, A.M., Glover, C., & Krogdahl, A. (2010). Feeding, digestion and absorption of nutrients. In: The Multifunctional Gut of Fish. Fish Physiology, Vol. 30 (Grosell, M., Farrell, A.P. & Brauner, C.J. eds), pp. 57– 110. Academic Press/Elsevier, Amsterdam
  • Basu, S., Roberts, J.A., Azam-Ali, S.N., & Mayes, S. (2007). Bambara groundnut. In:Kole C (ed) Pulse, sugar and tuber crops. Genome mapping and molecular breeding in plants, 3, 147-157. Springer-Verlag, Berlin Heidelberg
  • Beishir, l. (1987). Microbiology in Practice. A Self- Instructions Laboratory Course, 4th edn. Harper and Row Publishers, New York.
  • Bergh, Ø., Nass, K.E., & Harboe, T. (1994). Shift in the intestinal microflora of Atlantic halibut (Hippoglossus hippoglossus) larvae during first feeding. Canadian Journal of Fisheries and Aquatic Science, 51, 1899–1903.
  • Bergh, Ø. (1995). Bacteria associated with early life stages of halibut, Hippoglossus hippoglossus L., inhibit growth of a pathogenic Vibrio sp. Journal of Fish Diseases, 18, 31–40.
  • Blanch, A., Alsina, M., Simon, M., & Jofre, J. (1997). Determination of bacteria associated with reared turbot (Scophthalmus maximus) larvae. Journal of Applied Microbiology, 82, 729–734.
  • Boyd, C.E., Tucker, C., Mc Nevin, A., Bostick, K., & Clay, J. (2007) Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Rev. Fish. Sci., 15, 327-360.
  • Bruce, T.J., Neiger, R.D., & Brown, M.L. (2018). Gut histology, immunology and the intestinal microbiota of rainbow trout, Oncorhynchus mykiss (Walbaum), fed process variants of soybean meal. Aquaculture Research, 49, 492–504. https://doi.org/10.1111/are.13480
  • Buchanan, R.E., & Giboons, N.E. (1974). Bergey's Manual of Determinative Bacteriology 8 Edn. Baltimore, Williams & Wilkins.
  • Chessbrough, M. (2002). District Laboratory Practice in Tropical Countries. Part 2. Cambridge University Press. Campbridge, UK.
  • Dakora, F.D., & Muofhe, L.M. (1995). Nitrogen fixation and nitrogen nutrition in symbiotic bambara groundnut (Vigna subterranea (L.) Verdc.) and Kersting’s bean (Macrotyloma geocarpum (Harms) Marech. et Baud.) In: Hekler J, Begemann F, Mushonga J (ed) Proceedings of the workshop on conservation and improvement of bambara groundnut (Vigna subterranea (L.) Verdc.), pp 72-78. Harare Zimbabwe IPGRI Gatersleben/Department of Research & Specialist Services, Harare/International Plant Genetic Resources Institute, Rome, Italy
  • Dimitroglou, A., Merrifield, D.L., Spring, P., Sweetman, J., Moate, R., & Davies, S.J. (2010). Effects of dietary mannan oligosaccharides (MOS) and soybean meal on growth performance, feed utilization, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture, 300, 182–188.
  • Egerton, S., Culloty, S., Whooley, J., Stanton, C., & Ross, R.P. (2018). The gut microbiota of Marine Fish. Front. Microbiol, 9, 873.doi: 10.3389/fmicb.2018.00873
  • Enyidi. U.D. (2012). Production of feeds for African catfish Clarias gariepinus using plant proteins. Jyvaskyla Studies in Biological Sciences, 251. ISBN:978-951-39-4925-9, ISSN: 1456-9701.
  • Enyidi, U.D., Kiljunen, M., Jones, R., Vielma, J., & Pirhonen, J. (2013). Nutrient assimilation by first-feeding African catfish (Clarias gariepinus) assessed using stable isotope analysis. Journal of the World Aquaculture Society, 44, 161-172
  • Enyidi, U.D., & Mgbenka, B.O.M. (2014). Substitution of fishmeal with bambaranut waste meal in diets of first feeding (Clarias gariepinus X Heterobranchus bidorsalis) “Heteroclarias”. International Journal of Fisheries and Aquatic Studies, 1 (3), 118-122.
  • Enyidi, U.D., & Onuoha, J.U. (2016). Use of Probiotics as First Feed of Larval African Catfish Clarias gariepinus(Burchell 1822). Annual Research & Review in Biology, 9(2), 1-9.
  • Enyidi, U.D., Pirhonen, J., Kettunen, J., & Vielma, J. (2017). Effect of Feed Protein:Lipid Ratio on Growth Parameters of African Catfish Clarias gariepinus after Fish Meal Substitution in the Diet with Bambaranut (Voandzeia subterranea) Meal and Soybean (Glycine max) Meal. Fishes, 2017, 2, 1; doi: doi:10.3390/fishes2010001
  • Enyidi, U.D., & Etim, E.O. (2018). Use of solid state fermented bambaranut meal as substitute of fishmeal in the diets of African catfish Clarias gariepinus. Iranian Journal of Fisheries Sciences DOI: 10.22092/ijfs.2018.119856.
  • Francis G, Makkar H.P.S., & Becker, K. (2001) Anti nutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199, 197-227
  • Gajardo, K., Jaramillo-Torres, A., Kortner, T.M., Merrifield, D.L., Tinsley, J., Bakke, A.M., & Krogdahla, Å. (2017). Alternative protein sources in the diet modulate microbiota and functionality in the distal Intestine of Atlantic salmon (Salmo salar). Applied and Environmental Microbiology, Volume 83 Issue 5 e02615- 16
  • Gatesoupe, F.J., Huelvan, C., Le Bayon, N., Sévère, A., Aasen, I.M., Degnes, K.F., Mazurais, D., Panserat, S., ZamboninoInfante, J.L., & Kaushik, S.J., (2014). The effects of dietary carbohydrate sources and forms on metabolic response and intestinal microbiota in sea bass juveniles, Dicentrarchus labrax. Aquaculture, 422-423, 47-53.
  • Gatesoupe, F.J., Fauconneau, B., Deborde, C., et al. (2018). Intestinal microbiota in rainbow trout, Oncorhynchus mykiss, fed diets with different levels of fish-based and plant ingredients: A correlative approach with some plasma metabolites. Aquaculture Nutrition.00:1–14
  • Geurden, I., Mennigen, J., Plagnes-Juan, E., Veron, V., Cerezo, T., Mazurais, D., Zambonino-Infante, J., Gatesoupe, J., Skiba-Cassy, S., & Panserat, S. (2014). High or low dietary carbohydrate: protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. Journal of Experimental Biology, 217, 3396-3406.
  • Giatsis, C., Sipkema, D., Smidt, H., Verreth. J., & Verdegem, M. (2014). The Colonization Dynamics of the Gut Microbiota in Tilapia Larvae. PLoS ONE, 9(7):1-7
  • Gil Martens, L., Fjelldal, P.G., Lock, E.J., Wargelius, A., Wergeland, H., Witten, P.E., Hansen, T., Waagbø, R., & Ørnsrud, R. (2012). Dietary phosphorus does not reduce the risk for spinal deformities in a model of adjuvantinduced inflammation in Atlantic salmon (Salmo salar) postsmolts. Aquaculture Nutrition, 18, 12–20.
  • Green berge, A.E., Clesceri, L.S., & Eaton, A.D. (1992). Standard Methods for Examination of Water and Waste Water. 18th edn. Prepared and Published by APHA & American water works Association. Water Enviroment Federation.
  • Griez, L., Reyniers, J., Verdonck, L., Swings, J., & Ollevier, F. (1997). Dominant intestinal microflora of sea bream and sea bass larvae, from two hatcheries, during larval development. Aquaculture, 155, 387–399.
  • Hamza, A., Fdhila, K., Zouiten, D., & Masmoudi, A.S. (2016). Virgibacillus proomii and Bacillus mojavensis as probiotics in sea bass (Dicentrarchus labrax) larvae: effects on growth performance and digestive enzyme activities. Fish Physiology and Biochemistry, 42(2), 495– 507
  • Hardy, R.W. (2010). Utilization of plant protein in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, 41, 770-776
  • Harley, J.P. (2005). Laboratory Exercises in Microbiology, 6th ed. McGraw Hill, New York, NY
  • Heikkinen, J., Vielma, J., Kemiläinen, O., Tiirola, M., Eskelinen, P., Kiuru, T., Navia-Paldanius, D., & von Wright, A. (2006). Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture, 261(1), pp. 259-268.
  • Helland, S., Grisdale-Helland, B., & Nerland, S. (1996). A simple method for the measurement of daily feed intake of groups of fish in tanks. Aquaculture, 139(1), 157-163.
  • Imorou Toko, I., Fiogbe, E.D., & Kestemont, P. (2007). Growth, feed efficiency and body mineral composition of juvenile vundu catfish (Heterobranchus longifilis, Valenciennes 1840) in relation to various dietary levels of soybean or cottonseed meals. Aquaculture Nutrition, 13, 1-11
  • Kainz, M., Arts, M., & Mazumder, A. (2004). Essential fatty acids in the planktonic food web and their ecological role for higher trophic level. Limnololgy and Oceanography, 49, 1784-1793
  • Karunaratne, A., Azam-Ali, S., Sasey, A., Adu-dapaah, H., & Crout, N. (2008). Modelling the effect of temperature, soil moisture and photoperiod on growth and development of bambara groundnut (Vigna subterranea (L.) Verdc.): BAMGRO model. Global issues Paddock Action. In: Unkovich MJ (ed) Proceedings of the 14th Australian Agronomy Conference Adelaide South Australia, Australian Society of Agronomy. pp 4
  • Kim, D.-H., Brunt, J., & Austin, B. (2007). Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). Journal of Applied Microbiology, 102(6), 1654–1664
  • Lauzon, H.L., Gudmundsdottir, S., Petursdottir, S.K., Reynisson, E., Steinarsson, A., Oddgeirsson, M., ... & Gudmundsdottir, B.K. (2010). Microbiota of Atlantic cod (Gadus morhua L.) rearing systems at pre‐and posthatch stages and the effect of different treatments. Journal of applied microbiology, 109(5), 1775-1789. doi: 10.1111/j.1365-2672.2010.04806.x
  • Ye, L., Amberg, J., Chapman, D., Gaikowski, M., & Liu, W-T. (2014). Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. The ISME Journal, 8, 541–551
  • Li. X., Yu, Y., Feng, W., Yan, Q., & Gong, Y. (2012) Host species as a strong determinant of the intestinal microbiota of fish larvae. Journal of Microbiology, 50, 29–37.
  • Li, X., Yan, Q., Ringø, E., Wu, X., He, Y., & Yang, D. (2016) The influence of weight and gender on intestinal bacterial community of wild largemouth bronze gudgeon (Coreius guichenoti, 1874). BMC Microbiology, 16, 191.
  • Matsen, J.M. (1980). Antimicrobial susceptibility test. Laboratory testing in support of antimicrobial therapy. The C.V. Mosby Company, St. Lovis. MacFaddin, J.F. (2000). Biochemical tests for identification of medical bacteria, 3rd ed. Lippincott Williams & Wilkins, Philadelphia, PA.
  • Merrifield, D.L., Olsen, R.E., Myklebust, R., & Ringø, E. (2011). Dietary effect of soybean (Glycine max) products on gut histology and microbiota of fish. In H. El-Shemy (Ed.), Soybean and nutrition (pp.231–250). InTech: Rijeka, Croatia.ISBN 978-953-307-536-5.
  • Miao, M., Jiang, B., Jin, Z., & BeMiller, N. (2018). Microbial Starch-Converting Enzymes: Recent Insights and Perspectives. In Comprehensive Reviews in Food Science and Food Safety, 17,1238-1260
  • Minka, S.R., & Bruneteau, M. (2000). Partial chemical composition of bambara pea (Vigna subterranea (L) Verde). Food Chemistry, 68, 273-276.
  • Muroga, K., Higashi, M., & Keitoku, H. (1987). The isolation of intestinal microflora of farmed red seabream (Pagrus major) and black seabream (Acantliopagrus schlegeli) at larval and juvenile stages. Aquaculture, 65, 79–88
  • Munro, P.D., Birkbeck, T.H., & Barbour, A. (1993). “Influence of rate of bacterial colonisation of the gut of turbot larvae on larval survival,” in Fish Farming Technology, eds H. Reinertsen, L.A. Dahle, L. Jorgensen, and K. Tvinnereim, (Rotterdam: A.A. Balkema), 85–92.
  • Munro, P.D., Barbour, A., & Birkbeck, T.H. (1994). Comparison of the gut bacterial flora of start-feeding larval turbot reared under different conditions. Journal of Applied Microbiology. 77, 560–566. doi: 10.1111/j.1365- 2672.1994.tb04402.x
  • Navarrete, P.R.J. (2006). 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch). Microbial Ecology, 51, 422–430.
  • Navarrete, P., Magne, F., Araneda, C., Fuentes, P., Barros, L., Opazo, R., Espejo, R., & Romero, J., (2012). PCR-TTGE analysis of 16S rRNA from rainbow trout (Oncorhynchus mykiss) gut microbiota reveals host-specific communities of active bacteria. Plos One, e31335, 1-10.
  • Nayak, S.K., & Romero, J. (2010). Role of gastrointestinal microbiota in fish. Aquaculture Research, 41, 1553–1573
  • Obizoba, I.C., & Egbuna H.I. (1992). Effect of germination and fermentation on the nutritional quality of bambara nut (Voandzeia subterranea L. Thouars) and its product (milk). Plant Foods for Human Nutrition. 42, 13–23.
  • Olsen, R.E. & Ringø, E. (1997). Lipid digestibility in fish: a review. In: Recent Research Developments in Lipid Research, 1. (Pandalai, S.G. ed.), Transworld Research Net-work, Trivandrum, India. ISBN 81-8684604-2, pp. 199–265.
  • Parris, D.J., Morgan, M.M., & Stewart F.J. (2018). Feeding rapidly alters microbiome composition and gene transcription in the clownfish gut. Applied and Environmental Microbiology 85(3) DOI: 10.1128/AEM.02479-18
  • Parrish, C.C., (1999). Determination of total lipid classes and fatty acids in aquatic samples. In: Wetzel RG, Art MT, Wainmann BC (ed) Lipids in Freshwater Ecosystems. Springer-Verlag, New York, NY, USA pp 4-20
  • Pedrotti, F.S., Davies, S., Merrifield, D.L., Marques, M.R.F., Fraga, A.P.M., Mourino, J.L.P., & Fracalossi, D.M., 2015. The autochthonous microbiota of the freshwater omnivores jundiá (Rhamdia quelen) and tilapia (Oreochromis niloticus) and the effect of dietary carbohydrates. Aquaculte Res, 46, 472-481
  • Ray, A.K., Ghosh, K., & Ringø, E., (2012). Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr, 18, 465-492
  • Reid, H.I., Treasurer, J.W., Adam, B., & Birkbeck, T.H. (2009). Analysis of bacterial populations in the gut of developing cod larvae and identification of Vibrio logei, Vibrio anguillarum and Vibrio splendidus as pathogens of cod larvae. Aquaculture 288, 36–43. doi: 10.1016/j.aquaculture.2008.11.022
  • Ringø, E. (1993). The effect of chromic oxide (Cr2O3) on aerobic bacterial populations associated with the epithelial mucosa of Arctic charr, Salvelinus alpines (L.). Canadian Journal of Microbiology, 39, 1169–1173.
  • Ringø, E. (1993a). Does dietary linoleic acid affect intestinal microflora in Arctic charr, Salvelinus alpinus (L.)? Aquacult. Fish. Manage., 24, 133–135.
  • Ringø, E., & Birkbeck, T.H. (1999). Intestinal microflora of fish larvae and fry. Aquaculture Research, 30, 73-93.
  • Ringø, E., Olsen, R.E., Mayhew, T.M., & Myklebust, R. (2003). Electron microscopy of the intestinal microflora of fish. Aquaculture, 227,395–415
  • Ringø, E., & Song, S.K. (2015). Applications of dietary supplements (synbiotics and probiotics in combination with plant products and b-glucans) in aquaculture. Aquacult. Nutr., doi: 10.1111/ anu.12349.
  • Ringø, E., Zhou, Z., Gonzalez-Vecino, J.L., Wadsworth, S., Romero, J., Krogdahl, Å., Olsen, R.E., Dimitroglou, A., Foey, A., Davies, S., Owen, M., Lauzon, H.L., Løvmo, Martinsen, L., De Schryver, P., Bossier, P., Sperstad, S., & Merrifield, D.L., (2016). Effects of dietary components on the gut microbiota of aquatic animals: a never-ending story? Aquaculture Nutrition, 22, 219-282
  • Roeselers, G., Mittge, E.K., Stephens, W.Z., Parichy, D.M., Cavanaugh, C.M., Guillemin, K., & Rawls, J.F. (2011). Evidence for a core gut microbiota in the zebrafish. The ISME Journal, 1–14.
  • Romero, J., & Navarrete, P., (2006). 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch). Microbial Ecology, 51, 422–430.
  • Scott, K.P., Gratz, S.W., Sheridan, P.O., Flint, H.J., & Duncan, S.H., (2013). The influence of diet on the gut microbiota. Pharmacology Research, 69(1), 52-60
  • Shipton, T., & Hecht., T. (2005). A synthesis of the formulated animal and aquafeed industry in sub-Saharan African. In: by Moehl J, Halwart M (ed.) A Synthesis of the Formulated Animal and Aqua Feed Industry in SubSaharan Africa. pp.1-13. CIFA Occasional Paper, No 26.
  • Sire, M.F., & Vernier, J.-M. (1992). Intestinal absorption of protein in teleost fish. Comp.Biochem. Physiol., 103A, 771–781.
  • Sirivongpaisal, P. (2008). Structure and functional properties of starch and flour from bambara groundnut. Songklanakarin Journal of Science and Technology, 30, 51–56.
  • Suau, A., Bonnet, R., Sutren, M., Godon, J., Gibson, G.R., Collins, M.D., & Dore, J. (1999). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Applied and Environmental Microbiology, 65, 4799– 4807.
  • Sugita, H., Miyajima, C., & Deguchi, Y. (1991). The vitamin B12- producing ability of the intestinal microflora of freshwater fish. Aquaculture, 92, 267–276.
  • Tanasomwang, V., & Muroga, K. (1988). Intestinal microflora of larval and juvenile stages in Japanese flounder (Paralichthys olivaceus). Fish Pathology, 23, 77–83.
  • Thodesen, J., Grisdale-Helland, B., Helland, S.J., & Gjerde, B. (1999). Feed intake, growth and feed utilization of offspring from wild and selected Atlantic salmon. Aquaculture, 180, 237-246.
  • Tsuchiya, C., Sakata, T., & Sugita, H. (2008). Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Letters in Applied Microbiology, 46(1), 43–48.
  • Van den Ingh, T.S.G.A.M., Krogdahl, A., Olli, J.J.; Hendrix, H.G.C.J.M., & Koninkx, J.G.J.E. (1991). Effects of soybean containing diets on the proximal and distal intestine in Atlantic salmon Salmo salar: a morphological study. Aquaculture, 94, 297-305
  • Viana, M.T., Barreto-Curiel, F., Ramirez-Puebla, S.T., Ringø, E., Escobar-Zepeda, A., Godoy-Lozano, E, Vazquez-Duhalt, R., & Sanchez-Flores, A. (2018). Effects of extruded aquafeed on growth performance and gut microbiome of juvenile Totoaba macdonald. Animal Feed Science and Technology (2018) https://doi.org/10.1016/j.anifeedsci.2018.09.002
  • Vijayaram, S., Kannan, S., & Muthukumar, S. (2017). Isolation and characterization of probiotic bacteria isolated from diverse fish fauna of the trodden Vaigai river at Theni district. Journal of Chemistry Pharmaceutical Research, 8(7), 2016, 883-889.
  • Wu, S., Wang, G., Angert, E.R., Wang, W., Li, W., & Zou, H. (2012). Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7:e30440. https://doi.org/10.1371/journal.pone.0030440
  • Ye, L., Amberg, J., Chapman, D., Gaikowski, M., & Liu, W-T (2014). Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. The ISME Journal. 8, 541–551
  • Zhou, Z., Ringø, E., Olsen, R.E., & Song, S.K. (2017). Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: A review. Aquaculture Nutrition, 00:1–22. https://doi.org/10.1111/anu.12532.
Aquaculture Studies-Cover
  • ISSN: 2618-6381
  • Yayın Aralığı: 6
  • Başlangıç: 2001
  • Yayıncı: SU ÜRÜNLERİ MERKEZ ARAŞTIRMA ENSTİTÜSÜ