Effect of Cyclopoid Copepod Acanthocyclops trajani as a Supplementary Live Feed on the Growth, Survival and Fatty Acid Composition of Beluga Larvae (Huso huso)

Effect of Cyclopoid Copepod Acanthocyclops trajani as a Supplementary Live Feed on the Growth, Survival and Fatty Acid Composition of Beluga Larvae (Huso huso)

This study was carried out on the effect of cyclopoid copepod Acanthocyclops trajani on beluga Larvae (Huso huso) first feeding in March 2018. The applied diets contained: the composition of Artemia naupli and Daphnia magna (A diet) and the composition of Artemia naupli, Daphnia magna and A. trajani (B diet). Different methods were used to prepare live feeds and the analysis of the fatty acids of live feeds and beluga larval tissues was performed according to the instruction. The results of this study indicated that the lenghth, body weight and specific growth rate average in larvae of A and Bdiets were not significantly different. In spite of the fact that A. trajani was significantly different in amount of n-3 fatty acids in comparison to Artemia naupli and D. magnabut indicated more effectivity in survival rates (80%) of beluga larvae with these latter live feeds compound, as a supplement. Furthermore, the B diet was significantlydifferent in essential fatty acid DHA, in comparison to A diet, So, with due attention to important effects of this fatty acid on stress resistance of larvae, the better results withthe view to survival rate in this treat will be explainable.This study indicated thatfreshwater copepod was potential supplemental live food, specifically to increasenutritional value and survival rate of valuable fish larvae as beluga.

___

  • Aljami, F., & Zeng, C. (2015). Evaluation of microalgal diets for the intensive cultivation of the tropical calanoid copepod, Parvocalanus crassirostris. Aquaculture Research, 46 (5), 1025-1038. https://doi.org/10.1111/are.12254
  • Asgari, R., Rafiee, G., Eagdari, S., Noori, F., Agh, N., Poorbagher, H., & Gisbert, E. (2013). Ontogeny of the digestive enzyme activities in hatchery produced Beluga (Huso huso). Aquaculture, 416(416-417), 33-40. https://doi.org/10.1016/j.aquaculture.2013.08.014
  • Barroso, M.V., de Carvalho, C.V.A., Antoniassi, R., & Cerqueira, V.R. (2013). Use of the copepod Acartia tonsa as the first live food for larvae of the fat snook Centropomus parallelus. Aquaculture, 388 (1), 153-158. https://doi.org/10.1016/j.aquaculture.2013.01.022
  • Bell, J.G., Henderson, R.J., Tocher, D.R., McGhee, F., Dick, J.R., Porter, A., Smullen, R.P. & Sargent, J.R. (2002). Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. The Journal of Nutrition, 132(2), 222-230. https://doi.10.1093/jn/132.2.222
  • Bilton, H.T., & Robins, G.L. (1973). The effects of starvation and subsequent feeding on survival and growth of fulton channel sockeye salmon fry (Onchorhynchus nerka) fry. Canadian Journal of Fisheries and Aquatic Sciences,30(1), 1-5. https://doi.org/10.1139/f73-001
  • Buentello, J.A., Pohlenz, C., Margulies, D., Scholey, V.P., Wexler, J.B., Tovar-Ramírez, D., Neill, W.H., HinojosaBaltazar, P., & Gatlin, D.M. (2011). A preliminary study of digestive enzyme activities and amino acid composition of early juvenile yellowfin tuna (Thunnus albacares). Aquaculture, 312(1-4), 205-211. https://doi.org/10.1016/j.aquaculture.2010.12.027
  • Camus, T., & Zeng, C. (2009). The effects of stocking density on egg production and hatching success, cannibalism rate, sex ratio and population growth of the tropical calanoid copepod Acartia sinjiensis. Aquaculture, 287(1-2), 145-151. https://doi.org/10.1016/j.aquaculture.2008.10.005
  • Chepkwemoi, P., Bwanika, G.N., Kwetegyeka, J., Mbahizireki, G., Ndawula, L., & Izaara, A.A. (2013). Fatty acid profiles and growth of African catfish larvae fed on freshwater cyclopoid copepods and artemia as live starter feed. International Journal of Aquaculture, 3(22), 411-419. https://doi. 10.5376/ija.2013.03.0022
  • Dettlaff, T.A., Ginsburg, A.S., & Schmalhausen, O.I. (1993). Sturgeon Fishes: Developmental Biology and Aquaculture. Springer-Verlag Ed, Berlin, Germany., 299 pp.
  • Drillet, G., Jorgensen, N.O.G., Sorensen, T.F., Ramlov, H., & Hansen, B.W. (2006). Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquaculture Research, 37(8), 756-772. https://doi.org/10.1111/j.1365- 2109.2006.01489.x
  • Evjemo, J.O., Reitan, K.I., & Olsen, Y. (2003). Copepods as live food organisms in the larval rearing of halibut (Hippoglossus hippoglossus) with special emphasis on the nutritional value. Aquaculture, 227(1-4),191-210. https://doi.org/10.1016/S0044-8486(03)00503-9
  • Farhadian, O., Kharamannia, R., Mahboobi soofiani, N., & Ebrahimi, E. (2014). Larval feeding behaviour of angel fish Pterophyllum scalare (Cichlidae) fed copepod Eucyclops serrulatus and cladoceran Ceriodaphnia quadrangular. Aquaculture Research, 45(7), 1212-1223. https://doi.org/10.1111/are.12065
  • Frimpong, E.A., & Lochmann, S.E. (2005). Mortality of fish larvae exposed to varying concentrations of cyclopoid copepods. North American Journal of Aquaculture, 67(1), 66–71. https://doi/abs/10.1577/FA03-066.1
  • Fujita, S. (1979). Culture of red sea bream, Pagrus major and its food. Special Publication Emergency Medical Services (EMS), 14, 183–197.
  • Ghost, K., Sen, S.K., & Ray, A.K. (2004). Growth and survival of Rohu, Labeo rohita (Hamilton, 1822) spawn fed diets fermented with intestinal bacterium, Bacillus circulans. Acta Ichthyologica et Piscatoria, 34(2),155–165. https://doi/10.3750/AIP2004.34.2.04
  • Gisbert, E., & Williot, P. (2002). Advances in the larval rearing of Siberian sturgeon. Journal of Fish Biology, 60(5), 1071-1077. https://doi.org/10.1111/j.1095- 8649.2002.tb01705.x
  • Gomez-Gil, B., Herrera-Vega, M.A., Aberu-Grobis, F.A., & Roque, A. (1998). Bioencapsulation of two different vibrio species in nauplii of the brine shrimp (Artemia fransiscana). Applied Enviromental Microbiology, 64 (6), 2318-2322.
  • Hopkins, K.D. (1992). Reporting Fish Growth: A Review of the Basics. Journal of the World Aquaculture Society, 23(3), 173-179. https://doi.org/10.1111/j.1749- 7345.1992.tb00766.x
  • Hung, S.S.O., & Lutes, P.B. (1987). Optimum feeding rate of hatchery produced juvenile white sturgeon (Acipenser transmontanus). Aquaculture, 65(3-4), 307-317. https://doi.org/10.1016/0044-8486(87)90243-2
  • Hung, S.S.O., Lutes, P.B., & Storebakken, T. (1989). Growth and feed efficiency of white sturgeon (Acipenser transmontanus) sub yearling at different feeding rates. Aquaculture, 8(1-2), 147-153. https://doi.org/10.1016/0044-8486(89)90280-9
  • Jana, B.B., & Jana, S. (2003). The potential and sustainability of aquaculture in India. Journal of Applied Aquaculture, 13(3-4), 283–316. https://doi.org/10.1300/J028v13n03_05
  • Ma, Z., Qin, J.G., Hutchinson, W., & Chen, B.N. (2013). Food consumption and selectivity by larval yellowtail kingfish Seriola lalandi cultured at different live feed densities. Aquaculture Nutrition, 19(4), 523-534. https://doi.org/10.1111/anu.12004
  • Miquel, M., & Browse, J. (1992). Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis (biochemical and genetic characterization of a plant oleoylphosphatidylcholine desaturase. The Journal of Biological Chemistry, 267(3),1502-1509.
  • Oveisipour, M., & Rasco, B. (2011). Fatty acid and amino acid profiles of domestic and wild beluga (Huso huso) roe and impact on fertilization ratio. Journal Aquaculture Research and Development, 2(3),1-14. https://doi: 10.4172/2155-9546.1000113
  • Park, H.G., Puvanendran, V., Kellett, A., Parrish, C.C., & Brown, J.A. (2006). Effect of enriched rotifers on growth, survival, and composition of larval Atlantic cod (Gadus morhua). ICES Journal of Marine Science: Journal du Conseil. 63(2), 285-295. https://doi.org/10.1016/j.icesjms.2005.10.011
  • Payne, M.F., & Rippingale, R.J. (2001). Effects of salinity, cold storage and enrichment on the calanoid copepod Gladioferens imparipes. Aquaculture, 201(3-4), 251-262. https://doi.org/10.1016/S0044-8486(01)00609-3
  • Pillay, T.V.R., & Kutty, M.N. (2005). Aquaculture: Principles and practices. Wiley-Blackwell. 624 pp.
  • Rahmati, R. (2018). The effect of food diet type on production density and nutritional value improvement of cyclopoid copepod Acanthocyclops trajani and its role on the first feeding of Huso huso larvae. (PhD Thesis). Agricultural Sciences and Natural Resources University. Sari, Mazandaran, Iran.
  • Rajkumar, K.P., & Kumaraguru, V. (2006). Suitability of the copepod, Acartia clausi as a live feed for Seabass larvae (Lates calcarifer Bloch): Compared to traditional live food organisms with special emphasis on the nutritional value. Aquaculture, 261(2), 649-658. https://doi:10.1016/j.aquaculture.2006.08.043
  • Rasdi, N.W., Qin, J.G., & Li, Y. (2015). Effects of dietary microalgae on fatty acids and digestive enzymes in copepod Cyclopina kasignete, a potential live food for fish larvae. Aquaculture Research, 47(10), 3254- 3264. https://doi.org/10.1111/are.12778
  • Rice, J.A., Crowder, L.B., & Binkowski, F.P. (1987). Evaluating potential sources ofmortality for larval bloater (Coregonus hoyi): starvation and vulnerability to predation. Canadian Journal of Fisheries and Aquatic Sciences, 44(2),467–472. https://doi:10.1139/f87-055
  • Rønnestad, I., & Morais, S. (2007). Digestion. In: Fin, R.N., Kapoor, B.G. (Eds.), Fish Larval Physiology. Science Publishers, Enfield. 201–262.
  • Rønnestad, I., Yúfera, M., Ueberschär, B., Ribeiro, L., Sæle, Ø.,& Boglione, C. (2013). Feeding behaviour and digestive physiology in larval fish: current knowledge and gaps and bottlenecks in research. Reviews in Aquaculture, 5(s1), 559–598. https://doi.org/10.1111/raq.12010
  • Shields, R.J., Bell, J.G., Luizi, F.S., Gara, B., Bromage, N.R., & Sargent, J.R. (1999). Natural copepods are superior to enriched Artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary essential fatty acids. The Journal of Nutrition. 129(6), 1186-1194. https://doi:10.1093/jn/129.6.1186
  • Shields, R.J., Kotani, T., Molnar, A., Marion, K., Kobashigawa, J., & Tang, L. (2005). Intensive culture of a Calanoid copepod, Pavovalanus sp., as prey for small sub-tropical marine fish larvae. (pp. 209–223). Copepods in Aquaculture., 269 pp.
  • Sipauba-Tavares, L., & Pereira, A. (2008). Large scale laboratory cultures of Ankistrodesmus gracilis (Reisch) Korsikov (Chlorophyta) and Diaphanosoma biergein Korinek 1981 (Cladocera). Brazilian Journal of Biology, 68(4), 875-883. http://dx.doi.org/10.1590/S1519- 69842008000400025
  • Toledo, J.D., Golez, M.S., Doi, M., & Ohno, A. (1999). Use of copepod nauplii during early feeding stage of grouper Epinephelus coioides. Fisheries Science, 65(3), 390–397. http://dx.doi:10.2331/fishsci.65.390
  • Turner, J.T., Tester, P.A., & Hettler, F. (1985). A laboratory study of predation on fish eggs and larvae by the copepods Anomalocera ornate and Centropages typicus. Marine Biology, 90:1-8.
  • Watanabe, T., Kitajima, C., & Fujita, S. (1983). Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34(1-2), 115- 143. https://doi.org/10.1016/0044-8486(83)90296-X
  • Wiegand, M.D. (1996). Composition, accumulation and utilization of yolk lipids in teleost fish. Reviews in Fish Biology and Fisheries, 6(3), 259-286. https://doi.org/10.1007/BF00122583
  • Zeng, C., Shao, L., Ricketts, A., & Moorhead, J. (2018). The importance of ciopepods as live feed for larval of the green mandarin fish Synchiropus splendidus. Aquaculture, 491, 65-71. https://doi.org/10.1016/j.aquaculture.2018.03.011
Aquaculture Studies-Cover
  • ISSN: 2618-6381
  • Başlangıç: 2001
  • Yayıncı: SU ÜRÜNLERİ MERKEZ ARAŞTIRMA ENSTİTÜSÜ
Sayıdaki Diğer Makaleler

Characterization of Nematode Infestation on Parachanna obscura (Gunther, 1861) (Channidae) and Infection in the Blood

Paul Onu Ajah, Efio-Okon Bassey Ita, Nneka Love Allison

Effects of Long-Afterglow Phosphorescent Pigments on Somatic Growth in Juvenile Goldlined Spinefoot Siganus guttatus

Chihiro YAMAUCHİ, Yuki TAKEUCHİ

Effect of Cyclopoid Copepod Acanthocyclops trajani as a Supplementary Live Feed on the Growth, Survival and Fatty Acid Composition of Beluga Larvae (Huso huso)

Naser Agh, Rahimeh Rahmat, Abolghasem Esmaeili Fereidouni, Mastooreh Doustdar

Growth Performance and Nutritional Quality of Nile tilapia Caged in Northern Benin Water Reservoirs Exposed to Agricultural Effluents

Rodrigue Orobiyi Edéya Pèlèbè, Ibrahim Imorou Toko, Issa Nahoua Ouattara, Eloi Yatchégnon Attakpa, Jean Fall, Elie Montchowui, Célestin Melecony Ble

Maximizing Efficiency and Sustainability of Aquatic Food Production from Aquaponics Systems - A Critical Review of Challenges and Solution Options

Abentin ESTİM, Sitti Raehanah M. Shaleh, Rossita SHAPAWİ, Shafiqah SAUFİE, Saleem MUSTAFA

Histological Changes in Liver and Kidney of Clarias gariepinus (Burchell, 1822) Juvenile Exposed to Sub-lethal Doses of Chloramphenicol (CAP)

Jude S. Awoke, Peter J. Nkwuda, Joseph N. Nwakpa

Study on Quality and Abundance of Zooplankton in Surface Offshore Waters of Southern Part of Caspian Sea

Reza RAHNAMA, Ali HAMZEHPOUR

Fatty Acid Composition of Fillets of African Catfish, Clarias gariepinus Fed with Various Oil-Based Diets

Mmandu Uwem Effiong, Clement Ameh Yaro