Investigation of the toxicity of acetamiprid in SH-SY5Y neural cells

Investigation of the toxicity of acetamiprid in SH-SY5Y neural cells

Aim: Acetamiprid (ACE) is one of the most widely used neonicotinoids globally to protect crops from insects. In this study aimed to investigate the potential neurotoxic activity of acetamiprid on human neuroblastoma cell line SH-SY5Y cells. Materials and Methods: MTT and Muse analysis were performed to examine the effect on cell viability. Increasing doses of ACE were administered for 24 hours in SHSY5 neuroblastoma cell lines. NOS1, NOS2, NOS3; caspase-3 for assessment of apoptosis; Ki67 immunocytochemical staining was performed to evaluate proliferation, and relative mRNA values of these markers were measured by qRT-PCR analysis method to evaluate the efficacy of ACE on oxidative stress in neuroblastoma cell lines Results: The IC50 value for ACE 24 hours was found to be 21.35 mM. In SHSY5 cells, the immunoreactivity of NOS1, NOS3, and caspase-3 markers in the ACE applied group increased statistically significantly compared to the control group; Ki67 immunoreactivity also decreased (p < 0.05). qRT-PCR results were consistent with immunocytochemical findings, and relative mRNA values increased in ACE groups compared to the control group. Ki67 relative mRNA values decreased compared to the control group. Conclusion: In our study, it was found that ACE suppressed proliferation in SH-SY5Y cells, induced apoptosis, and caused cell toxicity by increasing oxidative stress.

___

  • 1. Chen M, Tao L, McLean J, Lu C. Quantitative analysis of neonicotinoid insecticide residues in foods: implication for dietary exposures. J Agric Food Chem. 2014;62(26):6082-6090. Epub 2014/06/17. https://doi.org/10.1021/jf501397m
  • 2. Ikenaka Y, Fujioka K, Kawakami T, Ichise T, Bortey-Sam N, Nakayama SMM, et al. Contamination by neonicotinoid insecticides and their metabolites in Sri Lankan black tea leaves and Japanese green tea leaves. Toxicology Reports. 2018;5:744-749. https://doi.org/https://doi.org/10.1016/j.toxrep.2018.06.008
  • 3. Kimura-Kuroda J, Komuta Y, Kuroda Y, Hayashi M, Kawano H. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS One. 2012;7(2):e32432. Epub 2012/03/07. https://doi.org/10.1371/journal.pone.0032432
  • 4. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends in pharmacological sciences. 2006;27(9):482-491. Epub 2006/08/01. https://doi.org/10.1016/j.tips.2006.07.004
  • 5. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699-729. Epub 2006/10/03. https://doi.org/10.1146/annurev.pharmtox.47.120505.105214
  • 6. Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol. 2005;45:247-268. Epub 2005/04/12. https://doi.org/10.1146/annurev.pharmtox.45.120403.095930
  • 7. Front Matter. In: Shannon MW, Borron SW, Burns MJ, editors. Haddad and Winchester’s Clinical Management of Poisoning and Drug Overdose (Fourth Edition). Philadelphia: W.B. Saunders; 2007. p. iii.
  • 8. Mohamed F, Gawarammana I, Robertson TA, Roberts MS, Palangasinghe C, Zawahir S, et al. Acute human selfpoisoning with imidacloprid compound: a neonicotinoid insecticide. PLoS One. 2009;4(4):e5127. Epub 2009/04/09. https://doi.org/10.1371/journal.pone.0005127
  • 9. Ueyama J, Harada KH, Koizumi A, Sugiura Y, Kondo T, Saito I, et al. Temporal Levels of Urinary Neonicotinoid and Dialkylphosphate Concentrations in Japanese Women Between 1994 and 2011. Environmental Science & Technology. 2015;49(24):14522-14528. https://doi.org/10.1021/acs.est.5b03062
  • 10. Cimino AM, Boyles AL, Thayer KA, Perry MJ. Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review. Environ Health Perspect. 2017;125(2):155-162. Epub 2016/07/08. https://doi.org/10.1289/EHP515
  • 11. Tsunoyama K, Gojobori T. Evolution of nicotinic acetylcholine receptor subunits. Mol Biol Evol. 1998;15(5):518-527. Epub 1998/05/15. https://doi.org/10.1093/oxfordjournals.molbev.a025951
  • 12. Stokes C, Treinin M, Papke RL. Looking below the surface of nicotinic acetylcholine receptors. Trends in pharmacological sciences. 2015;36(8):514-523. Epub 2015/06/13. https://doi.org/10.1016/j.tips.2015.05.002
  • 13. Levites Y, Youdim MB, Maor G, Mandel S. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol. 2002;63(1):21-29. Epub 2002/01/05. https://doi.org/10.1016/s0006-2952(01)00813-9
  • 14. Xue S, Jia L, Jia J. Hypoxia and reoxygenation increased BACE1 mRNA and protein levels in human neuroblastoma SH-SY5Y cells. Neurosci Lett. 2006;405(3):231-235. Epub 2006/08/12. https://doi.org/10.1016/j.neulet.2006.07.013
  • 15. Lopes FM, Schröder R, da Frota ML, Jr., Zanotto-Filho A, Müller CB, Pires AS, et al. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain research. 2010;1337:85-94. Epub 2010/04/13. https://doi.org/10.1016/j.brainres.2010.03.102
  • 16. Ozdal-Kurt F, Sen BH, Tuglu I, Vatansever S, Turk BT, Deliloglu-Gurhan I. Attachment and growth of dental pulp stem cells on dentin in presence of extra calcium. Arch Oral Biol. 2016;68:131-141. Epub 2016/05/11. https://doi.org/10.1016/j.archoralbio.2016.04.008
  • 17. Kitagawa N, Morikawa T, Motai C, Ninomiya K, Okugawa S, Nishida A, et al. The Antiproliferative Effect of Chakasaponins I and II, Floratheasaponin A, and Epigallocatechin 3-O-Gallate Isolated from Camellia sinensis on Human Digestive Tract Carcinoma Cell Lines. International journal of molecular sciences. 2016;17(12). Epub 2016/11/30. https://doi.org/10.3390/ijms17121979
  • 18. Kloesch B, Becker T, Dietersdorfer E, Kiener H, Steiner G. Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes. Int Immunopharmacol. 2013;15(2):400-405. Epub 2013/01/26. https://doi.org/10.1016/j.intimp.2013.01.003
  • 19. Jeschke P, Nauen R, Schindler M, Elbert A. Overview of the status and global strategy for neonicotinoids. J Agric Food Chem. 2011;59(7):2897-2908. Epub 2010/06/23. https://doi.org/10.1021/jf101303g
  • 20. Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends in pharmacological sciences. 2001;22(11):573-580. Epub 2001/11/08. https://doi.org/10.1016/s0165-6147(00)01820-4
  • 21. Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ Int. 2015;74:291-303. Epub 2014/12/03. https://doi.org/10.1016/j.envint.2014.10.024
  • 22. Products EPoPP, their R. Scientific Opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid. EFSA Journal. 2013;11(12):3471. https://doi.org/https://doi.org/10.2903/j.efsa.2013.3471
  • 23. Kong D, Zhang J, Hou X, Zhang S, Tan J, Chen Y, et al. Acetamiprid inhibits testosterone synthesis by affecting the mitochondrial function and cytoplasmic adenosine triphosphate production in rat Leydig cells. Biol Reprod. 2017;96(1):254-265. Epub 2017/04/11. https://doi.org/10.1095/biolreprod.116.139550
  • 24. Mandal P, Mondal S, Karnam S, Purohit KJEAMR. A behavioral study on learning a memory in adult Sprague Dawley rat in induced acetamiprid toxicity. 2015;5(1):27-32.
  • 25. Marfo JT, Fujioka K, Ikenaka Y, Nakayama SMM, Mizukawa H, Aoyama Y, et al. Relationship between Urinary N-Desmethyl-Acetamiprid and Typical Symptoms including Neurological Findings: A Prevalence Case-Control Study. PLOS ONE. 2015;10(11):e0142172. https://doi.org/10.1371/journal.pone.0142172
  • 26. Zhang Q, Li Z, Chang CH, Lou JL, Zhao MR, Lu C. Potential human exposures to neonicotinoid insecticides: A review. Environ Pollut. 2018;236:71-81. Epub 2018/02/08. https://doi.org/10.1016/j.envpol.2017.12.101
  • 27. Şenyildiz M, Kilinc A, Ozden S. Investigation of the genotoxic and cytotoxic effects of widely used neonicotinoid insecticides in HepG2 and SH-SY5Y cells. Toxicology and industrial health. 2018;34(6):375-383. Epub 2018/03/30. https://doi.org/10.1177/0748233718762609
  • 28. Cheng L, Lu Y, Zhao Z, Hoogenboom R, Zhang Q, Liu X, et al. Assessing the combined toxicity effects of three neonicotinoid pesticide mixtures on human neuroblastoma SK-N-SH and lepidopteran Sf-9 cells. Food Chem Toxicol. 2020;145:111632. Epub 2020/08/02. https://doi.org/10.1016/j.fct.2020.111632
  • 29. Cavas T, Cinkilic N, Vatan O, Yilmaz D. Effects of fullerenol nanoparticles on acetamiprid induced cytoxicity and genotoxicity in cultured human lung fibroblasts. Pestic Biochem Physiol. 2014;114:1-7. Epub 2014/09/02. https://doi.org/10.1016/j.pestbp.2014.07.008
  • 30. Gomez SD, Bustos PS, Sanchez VG, Ortega MG, Guinazu N. Trophoblast toxicity of the neonicotinoid insecticide acetamiprid and an acetamiprid-based formulation. Toxicology. 2020;431:152363. Epub 2020/01/15. https://doi.org/10.1016/j.tox.2020.152363
  • 31. Cortes DM, Cuello LG, Perozo E. Molecular architecture of fulllength KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol. 2001;117(2):165-180. Epub 2001/02/07. https://doi.org/10.1085/jgp.117.2.165
  • 32. Kara M, Ozta SE, Ozhan G. Acetamiprid-induced Cytoand Genotoxicity in the AR42J Pancreatic Cell Line. Turk J Pharm Sci. 2020;17(5):474-479. Epub 2020/11/13. https://doi.org/10.4274/tjps.galenos.2019.89719
  • 33. Martínez MA, Rodríguez JL, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Maximiliano JE, et al. Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosateinduced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ Int. 2020;135:105414. Epub 2019/12/25. https://doi.org/10.1016/j.envint.2019.105414
  • 34. Yao XH, Min H, Lv ZM. Response of superoxide dismutase, catalase, and ATPase activity in bacteria exposed to acetamiprid. Biomedical and environmental sciences : BES. 2006;19(4):309- 314. Epub 2006/10/19.
  • 35. Gasmi S, Kebieche M, Rouabhi R, Touahria C, Lahouel A, Lakroun Z, et al. Alteration of membrane integrity and respiratory function of brain mitochondria in the rats chronically exposed to a low dose of acetamiprid. Environ Sci Pollut Res Int. 2017;24(28):22258-22264. Epub 2017/08/12. https://doi.org/10.1007/s11356-017-9901-9
Annals of Medical Research-Cover
  • Yayın Aralığı: Aylık
  • Yayıncı: İnönü Üniversitesi Tıp Fakültesi
Sayıdaki Diğer Makaleler

Reverse shoulder arthroplasty: Short to mid-term clinical and radiological results

Emre ERGEN, Mehmet ŞAH ŞAKÇI, Hüseyin Utku ÖZDEŞ, Ersen TÜRKMEN, Kadir ERTEM, Ali CANBAY

Does the use of cannabinoids affect the ocular surface?

Tongabay CUMURCU, Kayhan MUTLU, Birgül ELBOZAN CUMURCU, Emine ŞAMDANCI

Is a first-trimester subchorionic hematoma and its size a risk for preterm premature rupture of membranes?

İlknur ÇÖL MADENDAĞ, Mehmet Mete KIRLANGIÇ, Mefkure ERASLAN ŞAHİN, Mehmet AK

Distribution of arrhythmic events in COVID-19 patients receiving favipiravir and hydroxychloroquine

Serhat KARADAVUT, İsmail ALTINTOP

The effect of neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR) and mean platelet volume to thrombocyte ratio (MPV/PLT) on survival in myelodysplastyc syndrome

Özcan ÇENELİ, Atakan TEKİNALP, Sinan DEMİRCİOĞLU, Ahmet Faruk ÇELİK

Short and mid-term clinical and radiological results in ligament-cutting total knee arthroplasty

Ekrem ÖZDEMİR, Reşit SEVİMLİ

Predictive roles of interpeduncular and pontomesencephalic angle measurements, which are anatomical landmarks in cranial MRI, in the differential diagnosis of pediatric headache

Oğuzhan ÖZDEMİR, Muhammet Bora UZUNER, Döndü ÜLKER ÜSTEBAY

Prostate gland localization with fiducial markers

Gül KANYILMAZ, Hatice ÖNDER

Investigation of antioxidant effect of silibinin molecule on U-2 OS cells induced by hydrogen peroxide

Emre DİRİCAN, Emre DİRİCAN, ‪Meral URHAN KÜÇÜK, Hasret ECEVİT, Kübra GÜNDÜZ

Endovascular treatment of brain arteriovenous malformations: Our clinical experience

Gökhan YÜCE, Adem DOĞAN