Maternal Tütün Dumanına Maruz Kalan Yavru Sıçanlarda Ekstremite Uzunlukları Üzerine Alfa Lipoik Asitin Etkileri

Maternal tütün dumanı maruziyetinin yenidoğan iskelet sisteminde gelişim geriliğine neden olduğu bilinmektedir. Alfa lipoik asit ALA , osteoblastın kemik oluşum mekanizmasını destekler. Bu çalışmada maternal tütün dumanına maruz kalan yavru sıçanların uzun kemikleri, boy ve kuyruk uzunlukları üzerine ALA’nın etkilerinin araştırılması amaçlandı. Sıçanlar dört gruba ayrıldı: 1 kontrol, 2 tütün dumanı, 3 tütün dumanı + ALA, 4 ALA. Grup 2 ve 3’te sıçanlar çiftleşme öncesi 8 hafta ve gebelikleri boyunca günde 2 kez 1’er saat tütün dumanına maruz bırakıldı. Ayrıca Grup 3’e 20 mg/kg dozunda ALA oral gavaj yoluyla verildi. Grup 4'e sadece ALA uygulandı. Doğumdan sonra 21. günde tüm gruplardaki yavru sıçanların boy ve kuyruk uzunlukları, dekapitasyondan sonra ise ekstremite uzun kemiklerinin boyları ölçüldü. Grup 2’de yapılan tüm morfometrik ölçümlerde grup 1’e kıyasla anlamlı derecede azalma, grup 3’ teki bütün ölçümlerde ise grup 2’ye göre anlamlı derecede artış bulundu p

Effects of Alpha Lipoic Acid on Limb Lengths in Neonatal Rats Exposed to Maternal Tobacco Smoke

Maternal tobacco smoke exposure is known to cause development retardation in the skeletal system of the newborn. Alpha lipoic acid ALA supports the bone formation mechanism of osteoblast. The present study aimed to investigate the effect of ALA on the long bone lengths, heights and tail lengths of the rat pups exposed to maternal tobacco smoke. The rats were divided into four groups: 1 control, 2 tobacco smoke, 3 tobacco smoke +ALA, 4 ALA. The rats in Group 2 and 3 were exposed to tobacco smoke twice a day for an hour for eight weeks before copulation and during their pregnancies. Also, ALA at the dose of 20 mg/kg was administered via oral gavage route to Group 3. Only ALA was administered to Group 4. On the postpartum day 21, the heights and tail lengths of the rat pups in all groups were measured, and after decapitation, the lengths of the long extremity bones were measured. A significant decline was noted in all morphometric measurements of Group 2 compared to Group 1 while a significant increase was found in all measurements of Group 3 compared to Group 2 p

___

  • 1. Abbott LC, Winzer-Serhan UH. ‘Smoking during pregnancy: lessons learned from epidemiological studies and experimental studies using animal models. Crit Rev Toxicol 2012; 42: 279-303.
  • 2. Centers for Disease Control. Annual smokingattributable mortality, years of potential life lost, and economic costsUnited States, 1995-1999. Morbid Mortal Weekly 2002; 51: 300-3.
  • 3. Forouzanfar MH, Afshin A, Alexander LT. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1659-724.
  • 4. Kapoor D, Jones TH. Smoking and hormones in health and endocrine disorders. Eur J Endocrinol 2005; 152: 49-9.
  • 5. Sneve M, Emaus N, Joakimsen RM, Jorde R. The association between serum parathyroid hormone and bone mineral density, and the impact of smoking: the Tromso Study. Eur J Endocrinol 2008; 158: 401-9.
  • 6. Mann V, Huber C, Kogianni G, Collins F, Noble B. The antioxidant effect of estrogen and selective estrogen receptor modulators in the inhibition of osteocyte apoptosis in vitro. Bone 2007; 40: 674-84.
  • 7. Correia S, Nascimento C, Gouveia R, Martins S, Sandes AR, Figueira J, Valente S, Rocha E, Da Silva L. Pregnancy and smoking: an opportunity to change behaviours. Acta Med Port 2007; 20: 201-7.
  • 8. Nusbaum ML, Gordon M, Nusbaum D, McCarthy MA, Vasilakis D. Smoke alarm: a review of the clinical impact of smoking on women. Prim Care Update Ob Gyns 2000; 7: 207-14.
  • 9. Huong DT, Ide T. Dietary lipoic acid-dependent changes in the activity and mRNA levels of hepatic lipogenic enzymes in rats. Br J Nutr 2008; 100: 79- 87.
  • 10. Bilska A. Wlodex L. Lipoic acid-the drug of future? Pharmacol report 2005; 57: 570-7.
  • 11. Goraca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B. Lipoic acid-biological activity and therapeutic potential. Pharmacol Rep 2011; 63: 849-58.
  • 12. Rosanna DP, Salvatore C. Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des 2012; 18: 3889-900.
  • 13. Polat B, Halici Z, Cadirci E, Albayrak A, Karakus E, Bayir Y, Bilen H, Sahin A, Yuksel TN. The effect of alpha-lipoic acid in ovariectomy and inflammationmediated osteoporosis on the skeletal status of rat bone. Eur J Pharmacol. 2013; 718: 469-74.
  • 14. Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 2009; 1790: 1149-60.
  • 15. Rochette L, Ghibu S, Richard C, Zeller M, Cottin Y, Vergely C. Direct and indirect antioxidant properties of a-lipoic acid and therapeutic potential. Mol Nutr Food Res 2013; 57: 114-25.
  • 16. Parente E, Colannino G, Picconi O, Monastra G.Safety of oral alpha-lipoic acid treatment in pregnant women: a retrospective observational study. Eur Rev Med Pharmacol Sci 2017; 21: 4219-27.
  • 17. Al Ghafli MHM, Padmanabhan R, Kataya HH, Berg B. Effects of α-lipoic acid supplementation on maternal diabetes-induced growth retardation and congenital anomalies in rat foetuses. Mol Cell Biochem 2004; 261: 123-35.
  • 18. Toledano A, Alvarez MI, Toledano-Díaz A. Diversity and variability of the effects of nicotine on different cortical regions of the brain therapeutic and toxicological implications. Cent Nerv Syst Agents Med Chem 2010; 10: 180-206.
  • 19. Basu S, Michaëlsson K, Olofsson H,Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 2001; 288: 275-9.
  • 20. Koh J-M, Lee Y-S, Byun C-H, Chang EJ, Kim H, Kim YH, Kim HH, Kim GS. Alpha-lipoic acid suppresses osteoclastogenesis despite increasing the receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio in human bone marrow stromal cells. J Endocrinol 2005; 185: 401-13.
  • 21. Mangiafico RA, Malaponte G, Pennisi P, Volti GL, Trovato G, Mangiafico M, Bevelacqua Y, Mazza F, Fiore CE. Increased formation of 8-iso-prostaglandin F(2alpha) is associated with altered bone metabolism and lower bone mass in hypercholesterolaemic subjects. J Intern Med 2007; 261: 587-96.
  • 22. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 1990; 85: 632-9.
  • 23. Olofsson H, Byberg L, Mohsen R, Melhus H, Lithell H, Michaëlsson K. Smoking and the risk of fracture in older men. J Bone Miner Res 2005; 20: 1208-15.
  • 24. Kanis JA, Johnell O, Oden A. et al. Smoking and fracture risk: a meta-analysis. Osteoporos Int 2005; 16: 155-62.
  • 25. Jeanty P, Cousaert E, Maertelaer V, Cantaine F. Sonographic detection of smoking-related decreased fetal growth. J Ultrasound Med 1987; 6: 13-8.
  • 26. Catalano PM, Thomas AJ, Availone DA, Amini SB. Anthropometric estimation of neonatal body composition. Am J Obstet Gynecol 1995; 173: 1176- 81.
  • 27. Koklu E, Güneş T, Güneş I, Canoz O, Kurtoglu S, Duygulu F, Erez R. Influence of Maternal Nicotine Exposure on Neonatal Rat Bone: Protective Effect of Ascorbic Acid. Am J Perinatol 2006; 23: 387-95.
  • 28. Xiao Y, Cui J, Shi Y, Le G. Lipoic acid increases the expression of genes involved in bone formation in mice fed a high-fat diet. Nutr Res 2011; 31: 309-17.
  • 29. Aydin A, Halici Z, Akoz A, Karaman A, Ferah I, Bayir Y, Aksakal AM, Akpinar E, Selli J, Kovaci H.Treatment with α-lipoic acid enhances the bone healing after femoral fracture model of rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 387: 1025-36.
  • 30. Mainini G, Rotondi M, Di Nola K, Pezzella MT, Iervolino SA, Seguino E, D'Eufemia D, Iannicelli I, Torella M. Oral supplementation with antioxidant agents containing alpha lipoic acid: effects on postmenopausal bone mass. Clin Exp Obstet Gynecol 2012; 39: 489-93.