Amalgam, Kompozit ve Cam İyonomer Simanların Isı İletkenlik Özelliklerinin İncelenmesi

Bu çalışmanın amacı farklı restoratif materyallerin ısı iletim özelliklerinin incelenmesidir. Bu çalışmada iki tip amalgam, 3 tip cam ionomer siman CİS ve 3 tip kompozit incelendi. Bu materyaller, üretici talimatlarına göre hazırlanarak standart kalıplara uygulandı. Her materyale ait 3 örnek hazırlandı. Ölçümler Heat Conduction Unit P.A. Hilton ltd, England test cihazı ile yapıldı. Her örnek için ısı iletim katsayısı Fourier formülü kullanılarak hesaplandı. Katsayılar, Kruskal-Wallis testi ile istatistiksel olarak analiz edildi. Isı iletiminde bazı materyaller arasında önemli farklılıklar bulundu p 0.05 . Kompozit örnekleri arasında ve CİS’ler arasında önemli bir fark bulunamadı p > 0.05 . Bu çalışma, restoratif materyallerin ısı yalıtkanları olarak görev yaptıklarını ve farklı ısı iletim özelliklerinin onların içeriklerinden kaynaklandığını göstermiştir

Examination of the Heat-Conductive Properties of Amalgams, Composites and Glass Ionomer Cements

The aim of this study was to examine the thermal conductivity of different restorative materials. Two types of amalgam, three types of glass ionomer cement GIC and three types of composite were examined. These materials were prepared in accordance with the manufacturers’ instructions and applied to standard moulds. Three samples of each material were prepared. Measurements were taken using a Heat Conduction Unit P.A. Hilton Ltd. Stockbridge, Hants, UK . The thermal conductivity coefficient was calculated for each sample using the Fourier equation. Coefficients were analyzed statistically by the Kruskal–Wallis test. Significant differences were found for thermal conductivity between some materials p 0.05 . No significant differences were found between composite samples and no significant differences were found between GICs p> 0.05 . This study showed that restorative materials functioned as thermal insulators and had different heat-conductive properties that depended on their composition.

___

  • Hannig M, Bott B. In-vitro pulp chamber temperature polymerization with various light-curing sources. Dent Mater 1999; 15: 275-81. composite resin
  • Zach L, Cohen G. Pulp Response to Externally Applied Heat. Oral Surg Oral Med Oral Pathol 1965; 19: 515-30.
  • Lin M, Xu F, Lu TJ, Bai BF. A review of heat transfer characterization and mathematical modeling. Dent Mater 2010; 26: 501-13. tooth--experimental
  • Çengel YA, Heat Transfer: A Practical Approach, 2nd ed. McGraw-Hill, New York, 2003.
  • Saatci B, Marasli N, Gunduz M. Thermal conductivities of solid and liquid phases in Pb-Cd and Sn-Zn binary eutectic alloys. Thermochimica Acta 2007; 454: 128-34.
  • Meydaneri F, Saatci B, Ozdemir M. Thermal conductivities solid and liquid phases for pure Al, pure Sn and their binary alloys. Fluid Phase Equilibria 2010; 298: 97-105.
  • Garrido PL, Hurtado PI, Nadrowski B. Simple one-dimensional model of heat conduction which obeys fourier’s law. Phys Rev Lett 2001;86:5486- 9.
  • Barclay CW, Spence D, Laird WR. Intra-oral temperatures during function. J Oral Rehabil 2005; 32: 886-94.
  • Weiner R. Teaching the use of liners, bases, and cements: a 10-year follow-up survey of North American Dental Schools. Dent Today 2006; 25: 74, 76, 78-9; quiz 79.
  • Jones CS, Billington RW, Pearson GJ. The effects of lubrication on the temperature rise and surface finish of glass-ionomer cements. J Dent 2006; 34: 602-7.
  • Jones CS, Billington RW, Pearson GJ. The effects of lubrication on the temperature rise and surface finish of amalgam and composite resin. J Dent 2007; 35: 36-42.
  • Grajower R, Kaufman E, Rajstein J. Temperature in the pulp chamber during polishing of amalgam restorations. J Dent Res 1974; 53: 1189-95.
  • Al-Qudah AA, Mitchell CA, Biagioni PA, Hussey DL. contemporary resin-containing dental materials. J Dent 2005; 33: 593-602. investigation of
  • Al-Qudah AA, Mitchell CA, Biagioni PA, Hussey DL. Effect of composite shade, increment thickness and curing light on temperature rise during photocuring. J Dent 2007; 35: 238-45.
  • Akbulut S, Ocak Y, Keşlioğlu K, Maraşlı N. Thermal conductivities of solid and liquid phases for neopentylglycol, aminomethylpropanediol and their binary alloy. J Phys Chem Solids 2009;70: 72-8.
  • Ocak Y, Aksoz S, Maraslı N, Keslioglu K. Experimental conductivity and solid-liquid interfacial energy of solid Ag3Sn intermetallic in the Ag-Sn-In ternary alloy. Intermetallics 2010; 18: 2250-8. thermal
  • Little PA, Wood DJ, Bubb NL, Maskill SA, Mair LH, Youngson CC. Thermal conductivity through various restorative lining materials. J Dent 2005; 33: 585-91.
  • Panas AJ, Zmuda S, Terpilowski J, Preiskorn M. Investigation of the thermal diffusity of human tooth hard tissue. Int J Thermophys 2003; 24: 837-47.
  • Civjan S, Barone JJ, Reinke PE, Selting WJ. Thermal properties of nonmetallic restorative materials. J Dent Res 1972; 51: 1030-7.
  • Figueiredo de Magalhaes M, Neto Ferreira RA, Grossi PA, de Andrade RM. Measurement of thermophysical properties of human dentin: effect of open porosity. J Dent 2008; 36: 588-94.
  • Tibbetts VR, Schnell RJ, Swartz ML, Philips RW. Thermal diffusion through amalgam and cement base: comparison of in vitro and in vivo measurements. J Dent Res 1976; 55: 441-51.
  • Brantley WA, Kerby RE. Thermal diffusivity of glass ionomer cement systems. J Oral Rehabil 1993; 20: 61-8.
  • Sweatman TL, Baumgartner JC, Sakaguchi RL. Radicular thermoplasticized gutta-percha. J Endod 2001; 27: 512-5. associated with
  • Dominici JT, Clark S, Scheetz J, Eleazer PD. Analysis of heat generation using ultrasonic vibration for post removal. J Endod 2005; 31: 301-3.