Pioglitazonun Metabolik Sendromlu Sıçan Kalp Fonksiyonuna Etkisinin Elektrofizyolojik Yöntemlerle İncelenmesi

Amaç: Metabolik sendrom (MetS), genellikle insülin-direnci ile karakterize, kardiyovasküler sistem sorunlarıyla seyreden, mekanizması henüz tam olarak anla?ılamamı? bir hastalıktır. Diğer yandan, MetS-indüklü komplikasyonların tedavisinde kullanılan bazı ilaçların, kardiyovasküler sistem sorunlarına ek sorunlar getirebildiği tartı?ılmaktadır. Bu çalı?mada, ilk olarak insülin-duyarla?tırıcı olarak bilinen pioglitazonun, MetSindüklü bozulan kalp fonksiyonu üzerindeki etkisini incelemeyi hedefledik. İkinci olarak, MetS-indüklü etkinin artan oksidatif stres üzerinden olup olmadığını göstermek amacıyla, bilinen bir antioksidan (kuersetin) uygulayarak sonuçları kar?ıla?tırmalı olarak incelenmesi hedefledik. Materyal ve Metodlar: Toplam 28-adet erkek Wistar-türü sıçanlar (3 aylık), kontrol grubu (Kon), MetS grubu (MetS; 18-hafta içme suyuna %32 sükroz eklenerek olu?turulmu?tur), MetS-grubunun 16. haftasından itibaren 2-hafta süre ile ya pioglitazon uygulanmı? MetS-grubu (Piog; 30 mg/kg/gün), ya da kuersetin uygulanmı? MetS grubu (Kuer; 75 mg/kg/gün) olarak düzenlenmi?tir. Tüm hayvanlar standart ko?ullarda normal sıçan yemi ile beslenmi?tir. Çalı?ma sonunda, hayvanların vücut ağırlıkları, kan ?ekeri ile serum toplam oksitatif stres (TOS) ve antioksidan (TAS) durumları özel kit ile ölçülmü?tür. Langendorff-izole-organ-sisteminde sol ventrikül içi basınç deği?imleri (SVBD) ile, enzimatik yöntemle kalbin ventrikülünden izole edilen kardiyomiyositlerde (Ca2+-duyarlı florofor Fura-2AM ile boyanmı?) hücre-içi bazal serbest-Ca2+ seviyesi ([Ca2+]i) ve elektriksel-uyarı altında (aksiyon-potansiyeli sırasında) geçici [Ca2+]i deği?imleri incelenmi?tir. Bulgular ve Sonuç: Pioglitazon veya kuersetin, MetS-grubunda kilo artı?ı ve yüksek kan ?ekeri üzerinde pozitif etkiler gösterirken, her iki ajan artmı? olan serum TOS seviyelerini deği?tirememi?, buna kar?ılık küçük fakat anlamlı seviyede TAS seviyesinin yükselmesine neden olmu?lardır (p

An Investigation on Effects of Pioglitazone in the Heart Function from Rats with Metabolic Syndrome by Using Electrophysiological Techniques

Objective: Metabolic syndrome (MetS), generally characterized with insulin-resistance, leads to severe cardiovascular disorders, however, the underlying mechanisms of this syndrome has not yet been fully determined. In addition, there are some controversies related with unti-diabetic agents used for treatment of MetS-induced complications, including their aggravating effects on the depressed cardiac function. Therefore, in this study, we first aimed to investigate the effects of pioglitazone, known as a insulinsensitizer, on MetS-induced heart dysfunction. Second, for a comparative study to determine whether MetS-induced heart dysfunction is due to increased oxidative stress, we used a known antioxidant (quercetin) to MetS rats for the same period. Material and Methods: Total 28 male Wistar rats (3 months) were grouped as control group, (Con), MetS group (MetS; added 32% sucrose to drinking water for 18-week), MetS group supplemented with pioglitazone (Piog; 30 mg/kg/day via gavage for 2-week, from 16th-week of MetS-group) and MetS with quercetin (Quer; 75 mg/kg/day via gavage for 2-weeks from 16th-week of MetS group). All rats were fed with standard rat-diet and tap water at standard condition. At the end of experimental period, the body weights and blood glucose levels, and total oxidative status (TOS) and total antioxidant status (TAS) in serum by using special kits were measured for all animals. By using Langendorff-isolated-organ system, left ventricle pressure changes (LVPC) were measured in isolated hearts. The basal level of intracellular free Ca2+ ([Ca2+]i) and Ca2+ transients under electrical-situmulation (under action-potential) were measured in freshly isolated cardiomyocytes by enzymatic-method (loaded with Ca2+-sensitive fluorescence dye, Fura-2AM). Results and Discussion: Either pioglitazone or quercetin application have positive effects on body weight and high blood sugar levels in MetS-group rats. Additionally, both agents caused a small but significant increase on serum TAS levels (p

___

  • 1. Reaven GM, Chang H, Hoffman BB. Additive hypoglycemic effects of drugs that modify free-fatty acid metabolism by different mechanisms in rats with streptozocin-induced diabetes. Diabetes 1988;37: 28-32.
  • 2. Hanson RL, Imperatore G, Bennett PH, et al. Components of the "metabolic syndrome" and incidence of type 2 diabetes. Diabetes 2002;51: 3120-3127.
  • 3. Meigs JB, Nathan DM, D'Agostino RB, Sr., Wilson PW, Framingham Offspring S. Fasting and postchallenge glycemia and cardiovascular disease risk: the Framingham Offspring Study. Diabetes Care 2002;25: 1845-1850.
  • 4. Gundogan K, Bayram F, Capak M, et al. Prevalence of metabolic syndrome in the Mediterranean region of Turkey: evaluation of hypertension, diabetes mellitus, obesity, and dyslipidemia. Metab Syndr Relat Disord. 2009;7: 427-434.
  • 5. Demiral Y, Soysal A, Can Bilgin A, et al. The association of job strain with coronary heart disease and metabolic syndrome in municipal workers in Turkey. J Occup Health 2006;48: 332-338.
  • 6. Onat A, Yuksel M, Koroglu B, et al. [Turkish Adult Risk Factor Study survey 2012: overall and coronary mortality and trends in the prevalence of metabolic syndrome]. Turk Kardiyol Dern Ars 2013;41: 373-378.
  • 7. Onat A. On the coronary heart disease mortality in Turkey. Atherosclerosis 2002;163: 203-204.
  • 8. Soysal A, Demiral Y, Soysal D, et al. The prevalence of metabolic syndrome among young adults in Izmir, Turkey. Anadolu Kardiyol Derg 2005;5: 196-201.
  • 9. Panchal SK, Poudyal H, Iyer A, et al. High-carbohydrate high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 2011;57: 51-64.
  • 10. Davidoff AJ, Mason MM, Davidson MB, et al. Sucrose-induced cardiomyocyte dysfunction is both preventable and reversible with clinically relevant treatments. Am J Physiol Endocrinol Metab 2004;286: E718- 724.
  • 11. Fang ZY, Schull-Meade R, Downey M, et al. Determinants of subclinical diabetic heart disease. Diabetologia 2005;48: 394- 402.
  • 12. de Freitas EV, Brandao AA, Pozzan R, et al. Study of the intima-media thickening in carotid arteries of healthy elderly with high blood pressure and elderly with high blood pressure and dyslipidemia. Clin Interv Aging 2008;3: 525-534.
  • 13. Gonsolin D, Couturier K, Garait B, et al. High dietary sucrose triggers hyperinsulinemia, increases myocardial betaoxidation, reduces glycolytic flux and delays post-ischemic contractile recovery. Mol Cell Biochem 2007;295: 217-228.
  • 14. Pang PS, Cleland JG, Teerlink JR, et al. A proposal to standardize dyspnoea measurement in clinical trials of acute heart failure syndromes: the need for a uniform approach. Eur Heart J 2008;29: 816-824.
  • 15. Davidoff AW, Boyden PA, Schwartz K, et al. Congestive heart failure after myocardial infarction in the rat: cardiac force and spontaneous sarcomere activity. Ann N Y Acad Sci 2004;1015: 84-95.
  • 16. Banos G, Medina-Campos ON, Maldonado PD, et al. Activities of antioxidant enzymes in two stages of pathology development in sucrose-fed rats. Can J Physiol Pharmacol 2005;83: 278-286.
  • 17. Cardenas G, Carlos Torres J, Zamora J, et al. Isolated heart function after ischemia and reperfusion in sucrose-fed rats: influence of gender and treatment. Clin Exp Hypertens 2006;28: 85-107.
  • 18. Perez-Torres I, El Hafidi M, Infante O, et al. Effects of sex hormone levels on aortic vascular reactivity and variables associated with the metabolic syndrome in sucrose-fed female rats. Can J Physiol Pharmacol 2008;86: 25-35.
  • 19. Perricone NV, Bagchi D, Echard B, et al. Blood pressure lowering effects of niacinbound chromium(III) (NBC) in sucrosefed rats: renin-angiotensin system. J Inorg Biochem 2008;102: 1541-1548.
  • 20. Ilkun O, Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 2013;19: 4806- 4817.
  • 21. Whaley-Connell A, Sowers JR. Oxidative stress in the cardiorenal metabolic syndrome. Curr Hypertens Rep 2012;14: 360- 365.
  • 22. Strakovsky RS, Pan YX. In utero oxidative stress epigenetically programs antioxidant defense capacity and adulthood diseases. Antioxid Redox Signal 2012;17: 237- 253.
  • 23. Ren J, Pulakat L, Whaley-Connell A, Sowers JR. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 2010;88: 993- 1001.
  • 24. Roberts CK, Barnard RJ, Sindhu RK, et al. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 2006;55: 928-934.
  • 25. Abbas A, Milles J, Ramachandran S. Rosuvastatin and atorvastatin: comparative effects on glucose metabolism in nondiabetic patients with dyslipidaemia. Clin Med Insights Endocrinol Diabetes 2012;5: 13-30.
  • 26. Hemmeryckx B, Hoylaerts MF, Gallacher DJ, et al. Does rosiglitazone affect adiposity and cardiac function in genetic diabetic mice? Eur J Pharmacol 2013;700: 23-31.
  • 27. Thackeray JT, deKemp RA, Beanlands RS, et al. Early diabetes treatment does not prevent sympathetic dysinnervation in the streptozotocin diabetic rat heart. J Nucl Cardiol 2014;21: 829-841.
  • 28. Yilmaz M, Bukan N, Demirci H, et al. Serum resistin and adiponectin levels in women with polycystic ovary syndrome. Gynecol EndocrinoL 2009;25: 246-252.
  • 29. Vasanji Z, Cantor EJ, Juric D, et al. Alterations in cardiac contractile performance and sarcoplasmic reticulum function in sucrose-fed rats is associated with insulin resistance. Am J Physiol Cell Physiol 2006;291: C772-780.
  • 30. Breunig IM, Shaya FT, McPherson ML, et al. Development of heart failure in Medicaid patients with type 2 diabetes treated with pioglitazone, rosiglitazone, or metformin. J Manag Care Spec Pharm 2014;20: 895-903.
  • 31. Palee S, Chattipakorn S, Phrommintikul A, et al. PPARgamma activator, rosiglitazone: Is it beneficial or harmful to the cardiovascular system? World J Cardiol 2011;3: 144-152.
  • 32. Okatan EN, Kizil S, Gokturk H, et al. High-carbohydrate diet-induced myocardial remodelling in rats. Curr Res Cardiol 2015; 2(1):5-10.
  • 33 Balderas-Villalobos J, Molina-Munoz T, Mailloux-Salinas P, et al. Oxidative stress in cardiomyocytes contributes to decreased SERCA2a activity in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol 2013;305: H1344-1353.
  • 34. Aguilera AA, Diaz GH, Barcelata ML, et al. Effects of fish oil on hypertension, plasma lipids, and tumor necrosis factoralpha in rats with sucrose-induced metabolic syndrome. J Nutr Biochem 2004;15: 350-357.
  • 35. Dutta K, Podolin DA, Davidson MB, et al. Cardiomyocyte dysfunction in sucrosefed rats is associated with insulin resistance. Diabetes 2001;50: 1186-1192.
  • 36. Jalil JE, Doering CW, Janicki JS, et al. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 1989;64: 1041-1050.
  • 37. Heerkens YF, Woittiez RD, Kiela J, et al. Mechanical properties of passive rat muscle during sinusoidal stretching. Pflugers Arch 1987;409: 438-447.
  • 38. Nikolic S, Yellin EL, Tamura K, et al. Passive properties of canine left ventricle: diastolic stiffness and restoring forces. Circ Res 1988;62: 1210-1222.
  • 39. Thiedemann KU, Holubarsch C, Medugorac I, et al. Connective tissue content and myocardial stiffness in pressure overload hypertrophy. A combined study of morphologic, morphometric, biochemical, and mechanical parameters. Basic Res Cardiol 1983;78: 140-155.
  • 40. Riva E, Andreoni G, Bianchi R, et al. Changes in diastolic function and collagen content in normotensive and hypertensive rats with long-term streptozotocin-induced diabetes. Pharmacol Res 1998;37: 233-240.
  • 41. Regan TJ, Wu CF, Yeh CK, at al. Myocardial composition and function in diabetes. The effects of chronic insulin use. Circ Res 1981;49: 1268-1277.
  • 42. Burlew BS, Weber KT. Connective tissue and the heart. Functional significance and regulatory mechanisms. Cardiol Clin 2000;18: 435-442.
  • 43. Dorkhan M, Dencker M, Stagmo M, et al. Effect of pioglitazone versus insulin glargine on cardiac size, function, and measures of fluid retention in patients with type 2 diabetes. Cardiovasc Diabetol 2009;8: 15.
  • 44, U.S. National Library of Medicine. "ACTOS (pioglitazone hydrochloride) tablet". NationalInstitutes of Health. 2010.
  • 45. Berria R, Gastaldelli A, Lucidi S, et al. Reduction in hematocrit level after pioglitazone treatment is correlated with decreased plasma free testosterone level, not hemodilution, in women with polycystic ovary syndrome. Clin Pharmacol Ther 2006;80: 105-114.
  • 46. Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. Jama 2008;299: 1561-1573.
  • 47. Miklos Z, Kemecsei P, Biro T, et al. Early cardiac dysfunction is rescued by upregulation of SERCA2a pump activity in a rat model of metabolic syndrome. Acta Physiol (Oxf) 2012;205: 381-393.
  • 48. Mellor KM, Wendt IR, Ritchie RH, et al. Fructose diet treatment in mice induces fundamental disturbance of cardiomyocyte Ca2+ handling and myofilament responsiveness. Am J Physiol Heart Circ Physiol 2012;302: H964-972