Koroner Arter Multi-dedektör BT Anjiyografi: İnvaziv Koroner Anjiyografi ile Karșılaștırılması

Amaç: Sekiz kanallı multidedektör BT (MDBT) koroner anjiyografi tetkikinin koroner arter hastalığının değerlendirilmesindeki potansiyelinin ve doğruluk oranının tespit edilmesi ve koroner arterlerin kardiyak siklusun fazlarına göre optimal değerlendirildiği persentilleri ve artefaktsız görüntülenme oranlarını bulmaktır. Gereç ve Yöntem: Aralık 2003-Temmuz 2005 tarihleri arasında koroner arter hastalığı ?üphesi nedeniyle tetkik edilen, ya?ları 39 ile 80 arasında deği?en (ortalama 55.6±9.6) 19'u kadın, 32'si erkek toplam 51 olgu çalı?maya dahil edildi. İnceleme 8 dedektörlü MDBT cihazı (Light Speed, General Electric, Wisconsin, ABD) kullanılarak gerçekle?tirildi. Bir mililitrede 400 mg iyot içeren non-iyonik kontrast madde (Iomeron, Bracco, İtalya) 120-140 cc miktarında, otomatik enjektör sistemi kullanılarak 5 ml/sn hızıyla enjekte edildi. Elde edilen ham görüntülerden, kardiyak siklusun %30-%80'lik diliminde, retrospektif EKG "gating" yöntemi kullanılarak rekonstrükte imajlar olu?turuldu. Ana koroner arterlerin kardiyak siklusun hangi dönemlerinde optimal göruntülenebildiği ara?tırıldı. Koroner arterlerin görüntülenebilen ve artefakttan bağımsız izlenebilen uzunlukları ölçüldü. Konvansiyonel grafi ile tetkik edilen 14 olguda stenoz ve olgu bazında MDBT'nin spesifisite ve sensitivite değerlerine bakıldı. Bulgular: Konvansiyonel grafi ile tetkik edilen 14 olgunun 7'sinde MDBT'de deği?ik düzeylerde %50 ve üstü darlık saptandı. Bu olguların 4'ünde bulgular konvansiyonel grafi ile uyumlu bulunurken MDBT'de anlamlı darlık saptanan 3 olguda ise konvansiyonel anjiyografide anlamlı darlık izlenmedi. Diğer 7 olguda ise hem anjiyografi hem de MDBT'de %50 ve üstü stenoz saptanmadı (hasta bazında spesifisite %70, sensitivite %100). Söz konusu iki yöntem arasında orta derecede uyum saptandı (kappa=0.571). MDBT'de 13 segmentte %50 ve üstü darlık kaydedildi. Konvansiyonel anjiyografide bunların 7'si uyumlu bulundu. Altı segmentte MDBT'de yanlı? pozitif, 4 segmentte yanlı? negatif sonuç bulundu (stenoz bazında spesifisite %53, sensitivite %63). Çalı?mada sol ana koroner arter tüm rekonstrüksiyon setlerinde artefaktsız olarak görüntülenebilmi?tir. Sol ön inen arterin kardiyak siklusun %70, sağ koroner arterin %50 ve sol sirkumfleks arterin ise %40'lık diliminde en iyi görüldüğü kaydedilmi?tir. Bu çalı?mada ana koroner arterlerin görüntülenebilen ortalama uzunlukları sol ana koroner arter 11.14±2.81 mm, sol ön inen arter 108.5±18.99 mm, sol sirkumfleks arter 68.02±17.26 mm, sağ koroner arter 105.45±25.68 mm bulunmu?tur. Sol ana koroner arter dı?ındaki ana koroner arterlerin artefaktsız görüntülenme oranları sol ön inen arter için %84.06±16.74, sağ koroner arter için %75.31±20.48, sol sirkumfleks arter için %68.02±17.26 bulunmu?tur. Sonuç: Sekiz kanallı MDBT sistemleriyle yapılan koroner anjiyografi, koroner arterlerde konvansiyonel koroner anjiyografinin yerini alabilecek potansiyele sahip değildir. Sekiz kanallı BT sistemleri dü?ük temporal çözünürlüğe bağlı olarak arterlerin tam olarak hareketsiz görüntülenmeleri için yeterli olmamaktadır. Bu nedenle koroner stenozların saptanması ve dı?lanması amacıyla koroner anjiyografinin yerini almaktan uzaktır

Coronary Angiography with Multidetector Row Computed Tomography: Comparison With Catheter Coronary Angiography

Purpose: We aimed to determine the potential and accuracy of multidetector computed tomography (MDCT) coronary angiography with an eight-row scanner in the evaluation of coronary artery disease, and find the best reconstruction percentiles for motion free evaluation of each coronary artery according to the phase of the cardiac cycle. Materials and Methods: Fifty-one patients, 19 females and 32 males, aged between 39 and 80 years (mean, 55.6 ± 9.6 years) with suspected coronary artery disease were included in the study between December 2003 and July 2005. Examinations were performed using an MDCT scanner with eight detector rows (Light Speed, General Electric, Wisconsin, USA) after the intravenous injection of 120-140 cc of 400 mg I/ml non-ionic contrast media (Iomeron, Bracco, Italy) at 5 ml/sec. Reconstructed images were created from the source images using retrospective ECG gating between the 30th and 80th percentiles of the cardiac cycle. The best phases of the cardiac cycle that allowed optimal imaging of the main coronary arteries were investigated. The lengths of the main coronary arteries that could be evaluated free from artifacts were measured. Findings of MDCT examination were compared with catheter angiography in 14 patients. Results: Stenoses exceeding 50% of the luminal diameter were found with MDCT in seven of 14 patients. In four patients findings of both methods were concordant (true positives). However, catheter angiography was normal in three patients with significant stenosis on MDCT (false positives). Both methods were negative for significant stenosis in the remaining seven cases (true negatives). On a per-patient basis, sensitivity of MDCT was 100%, but the specificity was 70%. There was a medium degree of correlation between both methods (kappa coefficient 0.571). On a per-lesion basis, stenosis of 50% and higher was found on MDCT in 13 segments. Seven of these were confirmed on conventional angiography. There were six false positive and four false negative results. On a per-lesion basis, the sensitivity of MDCT was 63% and the specificity was 53%. It was possible to image the left main artery in all reconstruction sets without artifacts. The left anterior descending artery was best seen in the 70th percentile of the cardiac cycle. The right coronary artery was best seen in the 50th percentile and the left circumflex artery was best seen in the 40th percentile. The average lengths of the main coronary arteries that could be evaluated were found to be 11.14 ± 2.81 mm for the left main artery, 108 ± 18.99 mm for the left anterior descending artery, 68.02 ± 17.26 mm for the left circumflex artery and 105.45 ± 25.68 mm for the right coronary artery. Ratios of the artefact free lengths were 84.06 ± 16.74% for the left anterior descending artery, 75.31 ± 20.48% for the right coronary artery and 68.02 ± 17.26% for the left circumflex artery. Conclusion: Coronary angiography performed using MDCT systems with eight detector rows do not have the potential of replacing conventional coronary angiography. They are not satisfactory in complete and artefact-free imaging of the coronary arteries because of low temporal resolution. Therefore they cannot reliably detect and exclude significant coronary stenosis

___

  • 1. Wielopolski PA, Van-Geuns RJ, deFeyter PJ, et al. Coronary arteries. Eur Radiol 1998;8:873-885.
  • 2. Fuster V, Alexander RW, O’Rourke RA, et al. Hurst’s The Heart, And Yayıncılık, 10. baskıdan çeviri, 2002;cilt 1:497-510.
  • 3. Schoenhagen Paul, Halliburton Sandra S, Stilman Arthur E, et al. Noninvasive imaging of coronary arteries: Current and future role of multidetector row CT. Radiology 2004;232:7-17
  • 4. Kato Y, Nair S, Sano H, et al. Multi-slice 3D-CTA an improvement over single slice helical CTA for cerebral aneurysms. Acta Neurochi 2002;144:715-722.
  • 5. Wintermark M, Poletti PA, Becker CD, et al. Traumatic injuries: organization and ergonomics of imaging in the emergency environment. Eur Radiol 2002;12:959- 968.
  • 6. Adams D, Hessel S, Judy P, et al. Differing attenuation coefficients of normal and infarcted myocardium. Science 1976;192:467-469.
  • 7. Rienmuller R, Tiling R. MR and CT for detection cardiac tumors. Thorac Cardiovasc Surg 1990;38(suppl 2):168- 172.
  • 8. Budoff MJ, Raggi P. Coronary artery disease progression assessed by electron beam computed tomography. Am J Cardiol 2001;88:46-50.
  • 9. Fuster V, Alexander RW, O’Rourke RA, et al. Hurst’s The Heart, And Yayıncılık; 10 baskıdan çeviri, 2002; cilt 1:3-4.
  • 10. American Heart Association. 2001 Heart and Stroke Statistical Update. Dallas, Tx:American Heart Association, 2001.
  • 11. Kennedy JW. Complications associated with cardiac catheterization and angiography. Cath Cardiovasc Diagn. 1982; 8:5-11.
  • 12. Davidson CJ, Fishman RF, Bonow RO. Cardiac catheterization. In: Braunwald E, ed. Heart Disease: A Textbook of Cardiovascular Medicine . Philadelphia, Pa: WB Saunders; 1997:177-203.
  • 13. Kopp AF, Schroeder S, Kuettner A, et al. Coronary arteries: Retrospectively ECGgated multi-detector row CT angiography with selective optimization of the image reconstruction window. Radiology 2001;221:683-688.
  • 14. Niemann K, Rensing BJ, Van Geuns RJ, et al. Usefulness of multislice computed tomography for detecting obstructive coronary artery disease. Am J Cardiol 2002;89:913-918.
  • 15. Flohr, Ohnesorge B. Heart rate adaptive optimization of spatial and temporal resolution for ECG-gated multislice spiral CT of the heart. J Comput Assist Tomogr 2001;25:907-923.
  • 16. Schoepf UJ, Becker CR, Ohnesorge BM, et al. CT of coronary artery disease. Radiology 2004;232:18-33.
  • 17. Hong C, Becker C, Huber A, et al. ECGgated reconstructed multi-detector row CT coronary angiography: Effect of varying trigger delay on image quality. Radiology 2001;220:712-717.
  • 18. Achenbach S, Ulzheimer S, Baum U, et al. Noninvasive coronary angiography by retrospectively ECG-gated multislice Spiral CT. Circulation 2000;102:2823-8.
  • 19. Achenbach S, Giesler T, Ropers D, et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively ECGgated, multislice spiral computed tomography. Circulation 2001;103:2535- 2528.
  • 20. Maruyama T, Yoshizumi T, Tamura R, et al. Comparison of visibility and diagnostic capability of noninvasive coronary angiography by eight-slice multidetectorrow computed tomography versus conventional coronary angiography. Am J Cardiol 2004;93:537-542.
  • 21. Sabarudin A, Sun Z. Coronary CT angiography: Diagnostic value and clinical challenges. World J Cardiol 2013;5:473- 483.
  • 22. Paul JF, Dambrin G, Caussin C, et al. Sixteen-slice computed tomography after acute myocardial infarction: from perfusion defect to the culprit lesion. Circulation 2003;108:373-4.
  • 23. Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 2003;107:664- 666.
  • 24. Madhok R, Aqqarwal A. Comparison of 128-slice dual source CT coronary angiography with invasive coronary angiography. J Clin Diagn Res 2014;8:RC08-11.
  • 25. Makaryus AN, Henry S, Loewinger L, et al. Multi-detector coronary CT imaging for the identification of coronary artery stenoses in a “Real World” population. Clin Med Insights Cardiol 2015;8(Suppl 4):13-22.
  • 26. Uehara M, Takaoka H, Kobayashi Y, et al. Diagnostic accuracy of 320-slice computed tomography for detection of significant coronary artery stenosis in patiens with various heart rates and heart rhythms compared with conventional coronary-angiography. Int J Cardiol 2013;167:809-815.
  • 27. Sajjadieh A, Hekmatnia A, Keivani M, et al. Diagnostic performance of 64-row coronary CT angiography in detecting significant stenosis as compared with conventional invasive coronary angiography. ARYA Atheroscler 2013;9:157-63.