PARTİSYON KATSAYISI (LOG P) TAHMİNİNDE KULLANILAN YAZILIMLARIN KARŞILAŞTIRILMASI

        Amaç: Sentezlenecek ilaç etken maddesi adayı bileşiklerin vücut dokularına ulaşabilmesi ve ulaştığında da toksik etki göstermemesi gerekmektedir. Kantitatif yapı-etki ilişkilerinin fizikokimyasal parametreler başlığında yer alan partisyon katsayısı (log P), ilacın farmakokinetik özelliklerini etkilemektedir. Araştırmacılar, ilaç geliştirme çalışmalarında zaman ve maliyetten tasarruf sağlamak amacıyla log P tahmin eden yazılımlara başvurabilmektedir. Fakat bu yazılımların tamamen doğru sonuç vermediği unutulmamalıdır. Bu çalışmada, kullanılmakta olan bu yazılımların güvenilirliği test edilmiştir. Bunlardan güvenilirliği onaylanan yazılım araştırmacılara partisyon katsayısının deneysel tayininden önce fikir verebilecektir.        Gereç ve Yöntem: 94 bileşikten oluşan bileşik verisetinde, literatürdeki log P değerleri ile ACD/iLab 2.0, ALOGPS 2.1 ve Molinspiration log P yazılımları aracılığıyla hesaplanan değerler karşılaştırılmış; sapma değerlerine göre bu üç yazılımdan en güvenilir olan seçilmiştir. Bileşiklerin partisyon katsayısı hesaplanırken SMILES kodları kullanılmıştır.         Sonuç ve Tartışma: 94 literatür bileşiğinden elde edilen hesaplama sonuçlarına göre partisyon katsayısı (log P) hesaplamada en güvenilir yazılımın, en düşük ortalama sapmaya sahip olan Molinspiration log P olduğuna karar verilmiştir. Bu yazılımın kullanılmasıyla araştırmacılar, sentezlenen bileşiklerin partisyon katsayısı hakkında yorum yürütebilecek olup, zaman ve maliyetten tasarruf edebileceklerdir.

COMPARISON OF PARTITION COEFFICIENT (LOG P) PREDICTION SOFTWARES

        Objective: Drug candidate compounds that are going to be synthesized have to reach body tissues and show minimum toxic effects within the body. Partition coefficient (log P), which is a physicochemical parameter of Quantitative Structure- Activity Relationship subject, effects the pharmacokinetical characteristic of the compound. In this context, researchers tend to use log P prediction softwares to save both time and resources in their drug development studies. Although, these softwares do not give a true value. In this study, softwares that have being used were tested. The one that gets approved for its accuracy can give some clues on the value of partition coefficient, before determining it experimentally.        Material and Method: In the following dataset, which comprises of 94 compounds, logP values from literature and values that have been calculated with softwares such as ACD/iLab 2.0, ALOGPS 2.1 ve Molinspiration have been compared. By calculating the deviations, most reliable of these three has been selected. SMILES notations of the compounds has been used as an input for the calculation.        Result and Discussion: According to the calculation results of 94 compounds, Molinspiration log P, which has the lowest average deviation value, was selected as most reliable log P prediction software. By using this software, scholars can comment on partition coefficients of their synthesized compounds. Therefore, hopefully they can save both time and resources.

___

  • Chiang, P., Hu, Y. (2009). Simultaneous Determination of LogD, LogP, and pKa of Drugs by Using a Reverse Phase HPLC Coupled with a 96-Well Plate Auto Injector, Combinatorial Chemistry & High Throughput Screening, 12: 250-257.
  • Mannhold, R., Poda, G.I., Ostermann, C., Tetko, I.V. (2009). Calculation of molecular lipophilicity: state-of-the-art and comparison of logP methods on more than 96,000 compounds. Journal of Pharmaceutical Sciences., 98: 861–893.
  • Moriguchi, I., Hirono, S., Nakagome, I., Hirano, H. (1994). Comparison of Reliability of log P Values for Drugs Calculated by Several Methods. Chemical and Pharmaceutical Bulletin, 42: 976-978.
  • Ghose, A.K. (1998). Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods:  An Analysis of ALOGP and CLOGP Methods. The Journal of Physical Chemistry A, 102: 3762-3772.
  • Abraham, M.H., McGowan, J.C. (1987). The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 23: 243-246.
  • Figueroa-Valverde, L., Diaz-Cedillo, F., Lopez Ramos, M. (2011). Synthesis of pregnenolone–danazol–ethylendiamine conjugate: relationship between descriptors log P, p, Rm, and Vm and its antibacterial activity in S. aureus and V. Cholerae, Medicinal Chemistry Research, 20: 847–853.
  • Figueroa-Valverde, L., Diaz-Cedillo F., Camacho-Luis, A., Lopez Ramos, M., Garcia Cervera E. (2010). Synthesis of a dihydrotestosterone–ciprofloxacin conjugate: relationship between descriptors logP, p, Rm, and Vm and its antibacterial activity in S. aureus and E. Coli, Monatshefte für Chemie, 141: 373–380.
  • Glover, S.A., Schumacher, R.R. (2016). The effect of hydrophobicity upon the direct mutagenicity of N-acyloxy-N-alkoxyamides—Bilinear dependence upon LogP, Mutation Research, 795: 41–50.
  • Abrego, V.H., Martínez-Pérez, B., Torres, L.A., Angeles, E., Martínez, L., Marroquín-Pascual, J.L., Moya-Hernández, R., Amaro-Recillas, H.A., Rueda-Jackson, J.C., Rodríguez-Barrientos, D., Rojas-Hernández, A. (2010). Antihypertensive and antiarrhythmic properties of a para-hydroxy[bis(ortho-morpholinylmethyl)]phenyl-1,4-DHP compound: comparison with other compounds of the same kind and relationship with logP values, European Journal of Medicinal Chemistry, 45: 4622- 4630.
  • Zhou, S., Yang, S., Huang, G. (2017). Design, synthesis and bioactivities of Celecoxib analogues or derivatives, Bioorganic & Medicinal Chemistry, 25: 4887–4893.
  • Wu, Y.C., Luo, S.H., Mei, W.J., Cao, L., Wu, H.Q., Wang, Z.Y. (2017). Synthesis and biological evaluation of 4-biphenylamino-5-halo-2(5H)-furanones as potential anticancer agents, European Journal of Medicinal Chemistry, 139: 84-94.
  • ACD/iLab, version 2.0 (2015). Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com.
  • VCCLAB (2005). Virtual Computational Chemistry Laboratory, http://www.vcclab.org.
  • Molinspiration Log P, (2017). Calculation of Molecular Properties and Bioactivity Score, http://www.molinspiration.com/cgi-bin/properties.
  • Petrauskas, A., Kolovanov, E. (2000). ACD/Log P Method Description. Persp. in Drug Design, 19:1–19.
  • Tetko, I. V.; Tanchuk, V. Y. (2002). Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program, Journal of Chemical Information and Computer Sciences, 42, 1136-45.
  • Tetko, I. V.; Tanchuk, V. Y.; Villa, A. E. (2001). Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices, Journal of Chemical Information and Computer Sciences, 41, 1407-21.
  • Bundgaard, H., Falch, E. (1985). Allopurinol prodrugs. I. Synthesis, stability and physicochemical properties of various N1-acyl allopurinol derivatives, International Journal of Pharmaceutics, 23, Issue 2: 223-237.
  • Sangster, J. . (1994) LOGKOW Databank. Montreal Quebec, Canada: Sangster Res. Lab.
  • Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A., Wang, J., Yu, B., Zhang, J., Bryant, S.H. (2016). PubChem Substance and Compound databases, Nucleic Acids Res., 44:202-13.
  • El Tayar, N., Waterbeemd, H., Testa, B. (1985). Lipophilicity measurements of protonated basic compounds by reversed-phase high-performance liquid chromatography: I. Relationship between capacity factors and the methanol concentration in methanol-water eluents, Journal of Chromatography A, 320, Issue 2: 293-304.
  • Kristl, A., Mrhar, A., Kozjek, F. (1993). The ionisation properties of acyclovir and deoxyacyclovir, International Journal of Pharmaceutics, 99, Issue 1, 79- 82.
  • McFarland, J.W., Berger, C.M., Froshauer, S.A., Hayashi, S.F., Hecker, SJ, Jaynes, BH, Jefson, MR, Kamicker, BJ, Lipinski, CA, Lundy, KM, Reese, CP, Vu, CB. (1997). Quantitative structure-activity relationships among macrolide antibacterial agents: in vitro and in vivo potency against Pasteurella multocida. Journal of Medicinal Chemistry, 40(9): 1340-6.
  • Takacs- Novak, K., Avdeef, A. (1996). Interlaboratory study of log {ce:inline-formula}P{/ce:inline-formula} determination by shake-flask and potentiometric methods, Journal of Pharmaceutical and Biomedical Analysis, 14, Issue 11: 1405-1413.
  • Hansch, C., Leo, A., Hoekman, D. (1995). Exploring QSAR Fundamentals and Applications in Chemistry and Biology, Volume 1. Hydrophobic, Electronic and Steric Constants, Volume 2, Journal of the American Chemical Society, 117.
  • Avdeef, A., Box, K.J., Comer, J.E.A., Hibbert, C., Tam, K.Y. (1997). pH-metric log P. 10. Determination of vesicle membrane – water partition coefficients of ionizable drugs. Pharmaceutical Research, 15: 208-214.
  • Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., Wilson, M. (2017). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research.
  • Dal Pozzo, A., Donzelli, G., Rodriquez, L., Tajana, A. (1989). “In vitro” model for the evaluation of drug distribution and plasma protein-binding relationships, International Journal of Pharmaceutics, 50, Issue 2: 97- 101.
  • Medic-Saric, M., Jasprica, A.M.I. (2004). Lipophilicity study of salicylamide, Acta Pharmaceutica. 54: 91–101.