ORGANİK REAKSİYONLARDA METAL İÇERMEYEN KATALİZÖR KULLANILARAK İNDOL TÜREVLERİNİN SENTEZİ

Amaç: İndol türevleri azot bazlı iskeletlerden biridir ve biyolojik veya tıbbi önemi olan birçok heterosiklik bileşiğin sentezinde sıklıkla kullanılır. Birçok indol türevi bitkilerden, mantarlardan ve deniz organizmalarından doğal olarak izole edilmiştir ve farmasötik aktiviteleri nedeniyle oldukça önemlidirler. Ayrıca polimer ve boya endüstrilerinde ve tarım sektöründe de önemli rol oynarlar. İstenen kimyasal ve biyomedikal özelliklere sahip indol bazlı heterosiklik iskelet yapısının sentezi için tasarım ve metodoloji geliştirmeye ihtiyaç vardır.

SYNTHESIS OF INDOLES DERIVATIVES USING METAL FREE CATALYST IN ORGANIC REACTIONS

Objective: Indole derivatives are one of the most flexible and common nitrogen-based skeletons and often used in the synthesis of numerous heterocyclic compounds, having biological or medicinal importance. Many indole derivatives have been isolated naturally from plants, fungi, and marine organisms and are highly important due to their pharmaceutical activities. They also play a significant character in polymer and dye industries as well as in the agriculture sector. There exists an immense potential for designing and methodology development for the synthesis of indole based heterocyclic scaffold structure with desire chemical and biomedical relevance.

___

  • 1. Yellappa, S. (2020). An anti-Michael route for the synthesis of indole-spiro (indene-pyrrolidine) by 1,3-cycloaddition of azomethineylide with indole-derivatised olefins. Journal of Heterocyclic Chemistry, 57, 1083–1089. [CrossRef]
  • 2. Tha, S., Shakya, S., Malla, R., Aryal, P. (2020) Prospects of Indole derivatives as methyl transfer inhibitors: Antimicrobial resistance managers. BMC Pharmacology Toxicology, 21, 1–11. [CrossRef]
  • 3. Sayed, M., Younis, O., Hassanien, R., Ahmed, M., Mohammed, A.A.K., Kamal, A.M., Tsutsumi, O. (2019). Design and synthesis of novel indole derivatives with aggregation-induced emission and antimicrobial activity. Journal of Photochemistry and Photobiology A: Chemistry, 383, 111969. [CrossRef]
  • 4. Parle, A., Kumar, N. (2020). Synthesis, characterization and evaluation of 3- acetylindole derivatives as potential antifungal agents. 9(6), 468–474. Retrieved from https://www.thepharmajournal.com/archives/?year=2020&vol=9&issue=6&ArticleId=4808
  • 5. Mo, Z.-Y., Wang, X.-Y., Zhang, Y.-Z., Yang, L., Tang, H.-T., Pan, Y.-M. (2020). Electrochemically enabled functionalization of indoles or anilines for the synthesis of hexafluoroisopropoxy indole and aniline derivatives. Organic & Biomolecular Chemistry, 18, 3832–3837. [CrossRef]
  • 6. Wei, C., Zhao, L., Sun, Z., Hu, D., Song, B. (2020). Discovery of novel indole derivatives containing dithioacetal as potential antiviral agents for plants. Pesticide Biochemistry and Physiology, 166, 104568. [CrossRef]
  • 7. Turner, D.N., Edwards, L., Kornienko, A., Frolova, L.V., Rogelj, S. (2020). Synergistic action of substituted indole derivatives and clinically used antibiotics against drug-resistant bacteria. Future Microbiology, 15(8), 579–590. [CrossRef]
  • 8. Syahri, J., Hidayah, N., Hilma, R., Nurohmah, B.A. (2020). Design of new 2,4-substituted furo [3,2-b]indole derivatives as anticancer compounds using quantitative structure-activity relationship (QSAR) and molecular docking. Molekul, 15(1), 9 – 17. [CrossRef]
  • 9. Zeng, L., Lin, Y., Cui, S. (2020). Indole-N-carboxylic acids and indole-N-carboxamides in organic synthesis. Chemistry—An Asian Journal, 15, 973–985. [CrossRef]
  • 10. Bhattacharjee, S., Das, D.K., Khan, A.T. (2014). Ammonium chloride-catalyzed three- component reaction for the synthesis of fused 4H-chromene derivatives in aqueous medium. Synthesis, 46, 73–80. [CrossRef]
  • 11. Ganguly, N.C., Roy, S., Mondal, P., Saha, R. (2012). An efficient one-pot organocatalytic synthesis of 9-(1H-indol-3-yl)-xanthen-4-(9H)-ones under mild aqueous micellar conditions. Tetrahedron Letters, 53, 7067–7071. [CrossRef]
  • 12. Jiang, Y.H., Yan, C.G. (2016). Three-component reaction for the convenient synthesis of functionalized 3-{1-[2-(1H-indol-3-yl)ethyl]-4,5,6,7-tetrahydro-1H-indol-3-yl}indolin-2-ones. Synthesis, 48, 3057–3064. [CrossRef]
  • 13. Klenc, J., Saczewski, J., Paluchowska, A., Raux, E. (2009). Synthesis of 4-substituted 2-(4- methylpiperazino)pyrimidines and quinazoline analogs as serotonin 5-HT 2A receptor ligands. Journal of Heterocyclic Chemistry, 46, 1259–1265. [CrossRef]
  • 14. Fatma, S., Singh, D., Ankit, P., Mishra, P., Singh, M., Singh, J. (2014). An eco-compatible multicomponent strategy for the synthesis of new 2-amino-6-(1H-indol-3-yl)-4-arylpyridine- 3,5-dicarbonitriles in aqueous micellar medium promoted by thiamine-hydrochloride. Tetrahedron Letters, 55, 2201–2207. [CrossRef]
  • 15. El-Sayed, N.S., Shirazi, A.N., El-Meligy, M.G., El-Ziaty, A.K., Rowley, D., Sun, J., Nagib, Z.A., Parang, K. (2014). Synthesis of 4-aryl-6-indolylpyridine-3-carbonitriles and evaluation of their antiproliferative activity. Tetrahedron Letters, 55, 1154–1158. [CrossRef]
  • 16. Naureen, S., Ijaz, F., Munawar, A.M., Asif, N., Chaudhry, F., Ashraf, M., Khan, M.A. (2017). Synthesis of tetrasubstitutd imidazoles containing indole and their antiurease and antioxidant activities. Journal of the Chilean Chemical Society, 62, 3583–3587. [CrossRef]
  • 17. Chen, T., Xu, X.P., Ji, S.J. (2010). Novel, one-pot, three-component route to indol-3-yl substituted spirooxindole derivatives. Journal of Combinatorial Chemistry, 12, 659–663. [CrossRef]
  • 18. Chen, X.B., Xiong, S.L., Xie, Z.X., Wang, Y.C., Liu, W. (2019). Three-component one-pot synthesis of highly functionalized bis-indole derivatives. ACS Omega, 4, 11832–11837. [CrossRef]
  • 19. Borpatra, P.J., Deka, B., Rajbongshi, B.K., Deb, M.L., Baruah, P.K. (2018). One-pot sequential multi-component reaction: Synthesis of 3-substituted indoles. Synthetic Communications, 48, 2074–2082. [CrossRef]
  • 20. Fawzy, N.M., Roaiah, H.M., Awad, E.M., Wietrzyk, J., Milczarek, M., Soliman, A.M.M. (2018) Synthesis of new indole derivatives using one- pot multicomponent reaction with antiproliferative towards normal and cancer cell lines. Egyptian Pharmaceutical Journal, 17(2), 1687–4315 [CrossRef]
  • 21. Wang, L. Shi, L.-X., Lu, L., Li, Z.-X., Xu, T.W., Hao, J., Li, G., Tu, S.-J., Jiang, B. (2017). Synthesis of diastereoenriched oxazolo[5,4-b]indoles via catalyst-free multicomponent bicyclizations. Journal of Organic Chemistry, 82, 3605–3611. [CrossRef]
  • 22. Lin, W., Zheng, Y.X., Xun, Z., Huang, Z.B., Shi, D.Q. (2017). Microwave-assisted regioselective synthesis of 3-functionalized indole derivatives via three-component domino reaction. ACS Combinatorial Science, 19, 708–713. [CrossRef]
  • 23. Zeng, L., Sajiki, H., Cui, S. (2019). Multicomponent ugi reaction of indole- n-carboxylic acids: expeditious access to indole carboxamide amino amides. Organic Letters, 21, 5269–5272. [CrossRef]
  • 24. Singh, V.K., Dubey, R., Upadhyay, A., Sharma, L.K., Singh, R.K.P. (2017). Electrochemical approach for synthesis of 3-substituted indole derivatives. Tetrahedron Letters, 58, 4227–4231. [CrossRef]
  • 25. Krishnammagari, S.K., Balwe, S.G., Kim, J.S., Lim, K.T., Jeong, Y.T. (2019). A one-pot four- component domino protocol for the synthesis of indole and coumarin containing pyridine-3- carbonitrile derivatives. Monatshefte fur Chemie, 150, 691–702. [CrossRef]
  • 26. Mazzotta, S., Frattaruolo, L., Brindisi, M., Ulivieri, C., Francesca, V., Brizzi, A., Carullo, G., Cappello, A.R., Aiello, F. (2019). 3-Amino-alkylated indoles: Unexplored green products acting as anti-inflammatory agents. Future Medicinal Chemistry, 12, 5–17. [CrossRef]
  • 27. Rathod, A.S., Reddy, P.V., Biradar, J.S. (2020). Microwave-assisted synthesis of some indole and isoniazid derivatives as antitubercular agents and molecular docking study. Russian Journal of Organic Chemistry, 56, 662–670. [CrossRef]
  • 28. Radwan, M.A.A., Alminderej, F.M., Awad, H.M. (2020). One-pot multicomponent synthesis and cytotoxic evaluation of novel 7-substituted-5-(1H-indol-3yl)tetrazolo[1,5-a] pyrimidine-6- carbonitrile. Molecules, 25, 255. [CrossRef]
  • 29. Dhuguru, J., Skouta, R. (2020). Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules, 25, 1615. [CrossRef]
  • 30. Mousavizadeh, F., Talebizadeh, M., Anary-Abbasinejad, M. (2018). Synthesis of new indolylpyrrole derivatives via a four-component domino reaction between arylglyoxals, acetylacetone, indole and aliphatic amines in aqueous media. Tetrahedron Letters, 59, 2970– 2974. [CrossRef]
  • 31. Kumari, P., Mishra, V.S., Narayana, C., Khanna, A., Chakrabarty, A., Sagar, R. (2020). Design and efficient synthesis of pyrazoline and isoxazole bridged indole C-glycoside hybrids as potential anticancer agents. Scientific Reports, 10, 6660. [CrossRef]
  • 32. Yang, A., Li, Z. (2020). Transition-metal-free aerobic oxidative cross-coupling of indoles with arylidenemalononitriles. Synlett, 31, 194–198. [CrossRef]
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

4-HİDROKSİ-BENZAMİD TÜREVİNİN YAPISAL VE FARMASÖTİK DEĞERLENDİRMESİ: ANTİ-BAKTERİYAL VE ANTİ-VİRAL ETKİ

Aarthi Kundam VASUDEVAN, Hemamalini RAJAGOPAL, S. MUTHU, Fazılath Basha ASİF, Badiadka NARAYANA

GALIUM APARINE’NİN ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİPROLİFERATİF AKTİVİTELERİ

Nuh KORKMAZ, Alpaslan DAYANGAÇ, Mustafa SEVİNDİK

RESVERATROLÜN BULUNDUĞU KAYNAKLAR VE TIBBİ ÖNEMİ

Seren GÜNDOĞDU, Ümmügülsüm UÇAR, Ayşe UZ

ALOE VERA (L.) BURM. F. (SARISABIR) BİTKİSİNİN FİTOTERAPİDE KULLANIMI

Hilal Ahsen TUNÇAY, Gülen İrem KAYA

OPOPANAX HISPIDUS’UN ANTİOKSİDAN VE ANTİ-İNFLAMATUAR AKTİVİTELERİ ÜZERİNE BİR ÖN ÇALIŞMA

Safa GÜMÜŞOK, Sezen YILMAZ SARIALTIN, Tülay ÇOBAN, Ceyda Sibel KILIÇ

TIBBİ KENEVİR VE SAĞLIK: FARMAKOLOJİK BİR DERLEME

Özge BALPINAR, Selim AYTAÇ

YENİ İZOLE EDILEN VB_K1 BAKTERİYOFAJININ İZOLASYONU VE ESBL POZİTİF KLEBSİELLA TÜRLERİ ÜZERİNE DUYARLILIĞININ ARAŞTIRILMASI

Hilal Basak EROL, Banu KAŞKATEPE

3- VE 4-SÜBSTİTÜE-5-((3-FENİLPROPİL)TİYO)-4H-1,2,4-TRİAZOLLERİN MİKRODALGA SENTEZİ

Andrey SAFONOV, Alina NEVMYVAKA, Oleksandr PANASENKO, Yevgenii KNYSH

TÜRKİYE’DE DOĞAL OLARAK YETİŞEN CELTIS AUSTRALIS L. VE C. TOURNEFORTII LAM. (CANNABACEAE) MEYVELERİNİN YAĞ ASİTİ BİLEŞİMLERİ VE ANTİMİKROBİYAL ETKİLERİNİN DEĞERLENDİRİLMESİ

Gülderen YILMAZ, Gözde ÖZTÜRK, Betül DEMİRCİ

2-((4-R-5-R1-4H-1,2,4-TRİAZOL-3-İL)TİYO)ASETALDEHİTLERİN İLİDENHİDRAZİDLERİNİN SENTEZİ, ANTİMİKROBİYAL VE ANTİFUNGAL AKTİVİTES

Olexandr PANASENKO, Roman SHCHERBYNA, Olha POLONETS, Natalia NEDOREZANIUK, Maryna DUCHENKO