MİNYATÜRE EDİLMİŞ VE PORTATİF YAKIN KIZIL ÖTESİ (NIR), FOURIER DÖNÜŞÜMLÜ KIZILÖTESİ (FTIR) ve RAMAN SPEKTROMETRELERİNİN FARMASÖTİKLERİN DENETİMİ VE KONTROLÜNDEKİ UYGULAMALARI

Amaç: Bu derlemede, farmasötik ürünlerin kalite kontrollerinin değerlendirilmesi ve belirlenmesi için portatif ve minyatür Fourier transform infrared (FT-IR), yakın kızıl ötesi (NIR) ve Raman spektrometrelerin geniş uygulama alanları tartışılmıştır. Farmasötik ürünlerde yapılan sahtecilikler sonucunda, genel refah için bir tehlike haline gelen taklit, hileli, tahrif edilmiş ve standart altı farmasötik ürünlerin belirlenmesinde kullanılan bu portatif spektrometreler, titreşimsel ve saçılma spektroskopileri için kullanılmaktadır.Gereç ve Yöntem: Çeşitli bilimsel makaleler ve kitaplar incelenmiş olup, geçmişten günümüze kadar olan süreçte, Fourier transform infrared (FT-IR), yakın kızıl ötesi (NIR) ve Raman spektrometrelerin farmasötik ürünlerin kalite kontrolü ve denetimi ile ilgili uygulamaları derlenmiştir. Sonuç ve Tartışma: Hileli farmasötik ürünler özellikle gelişmekte olan ülkeler için önemli bir tehdit haline gelmiştir. Bu problem, farmasötik ürünlere olan güveni azaltabilmektedir. Bu makalede bahsi geçen  portatif cihazların uygulanması, fitöfarmasötiklerin kalite kontrolünde tekniklerin daha erişilebilir, hızlı, doğru, basit, hassas, sağlam ve daha da önemlisi, verimli olmasını sağlamaktadır.

APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS

Objective: In this review, the wide range of different applications of portable and miniaturized Fourier transform infrared (FT-IR), near-infrared (NIR), and Raman spectrometers for quality control, assessment and inspection of pharmaceutical products are discussed. In regard to counterfeiting, these portable spectrometers are utilized for vibrational and scattering spectroscopies in the identification of counterfeits, adulterated, fraudulent, falsified and substandard pharmaceutical products which are becoming significant problems and a danger to general well-being, particularly in the developing nations.Meterial and Method: Totally 74 different scientific articles and books were researched and reviewed to explain the applications of miniaturized and portable near infrared (NIR), Fourier transform Infrared (FT-IR) and Raman spectrometers for the inspection and control of pharmaceutical products from past to nowadays. Result and Discussion: Adulterated pharmaceutical products have become the greatest threat for developing countries. This problem can reduce the confidence for pharmaceutical products. The application of mentioned portable devices for determinations the quality control of pharmaceutical product, enables the techniques to be more accessible, quick, accurate, simple, precise, robust and more importantly, efficient.

___

  • 1. World Health Organization. (2018). Substandard and falsified medical products, (143 rd session of the executive board).
  • 2. Pérez-Alonso, M., Castro, K., Madariaga, J. M. (2006). Vibrational spectroscopic techniques for the analysis of artefacts with historical, artistic and archaeological value. Current Analytical Chemistry, 2(1), 89–100.
  • 3. Duran, A., Jimenez De Haro, M., Perez‐Rodriguez, J., Franquelo, M., Herrera, L., Justo, A. (2010). Determination of pigments and binders in Pompeian wall paintings using synchrotron radiation–high‐resolution X‐ray powder diffraction and conventional spectroscopy–chromatography. Archaeometry, 52(2), 286–307.
  • 4. Nastova, I., Grupče, O., Minčeva-Šukarova, B., Kostadinovska, M., Ozcatal, M. (2015). Spectroscopic analysis of pigments and inks in manuscripts. III. Old-Slavonic manuscripts with multicolored rubication. Vibrational Spectroscopy, 78, 39–48.
  • 5. Crupi, V., Allodi, V., Bottari, C., D’Amico, F., Galli, G., Gessini, A., Mariotto, G. (2016). Spectroscopic investigation of Roman decorated plasters by combining FT-IR, micro-Raman and UV-Raman analyses. Vibrational Spectroscopy, 83, 78–84.
  • 6. Bitossi, G., Giorgi, R., Mauro, M., Salvadori, B., Dei, L. (2005). Spectroscopic techniques in cultural heritage conservation: a survey. Applied Spectroscopy Reviews, 40(3), 187–228.
  • 7. Clark, R. J. (2006). Applications of Raman Spectroscopy to the Identification and Conservation of Pigments on Art Objects. Handbook of vibrational spectroscopy.
  • 8. Miliani, C., Rosi, F., Daveri, A., Brunetti, B. G. (2012). Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Applied Physics A, 106(2), 295–307.
  • 9. Lauwers, D., Hutado, A. G., Tanevska, V., Moens, L., Bersani, D., Vandenabeele, P. (2014). Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 294–301.
  • 10. Colomban, P. (2012). The on‐site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. Journal of Raman spectroscopy, 43(11), 1529–1535.
  • 11. Vandenabeele, P., Edwards, H. G. M., Jehlička, J. (2014). The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chemical Society Reviews, 43(8), 2628–2649.
  • 12. Barone, G., Bersani, D., Jehlička, J., Lottici, P. P., Mazzoleni, P., Raneri, S., Larinà, G. (2015). Nondestructive investigation on the 17‐18th centuries Sicilian jewelry collection at the Messina regional museum using mobile Raman equipment. Journal of Raman Spectroscopy, 46(10), 989–995.
  • 13. Conti, C., Botteon, A., Bertasa, M., Colombo, C., Realini, M., Sali, D. (2016). Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces. Analyst, 141(15), 4599–4607.
  • 14. Terao, W., Mori, T., Fujii, Y., Koreeda, A., Kabeya, M., Kojima, S. (2018). Boson peak dynamics of natural polymer starch investigated by terahertz time-domain spectroscopy and low-frequency Raman scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192, 446–450.
  • 15. Vagnini, M., Gabrieli, F., Daveri, A., Sali, D. (2017). Handheld new technology Raman and portable FT-IR spectrometers as complementary tools for the in situ identification of organic materials in modern art. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 176, 174–182.
  • 16. Guidance document on the use of detection technologies and overview of detection technologies for drug safety, (2015).
  • 17. Zou, W.-B., Yin, L.-H., Jin, S.-H. (2017). Advances in rapid drug detection technology. Journal of Pharmaceutical and Biomedical Analysis, 147, 81-88.
  • 18. Herschel, W. (1800). Experiments on the refrangibility of invisible rays of the sun. Philosophical Transactions Of The Royal Society A: Mathematical, Physical And Engineering Sciences, 90, 255–326.
  • 19. Jamrógiewicz, M. (2012). Application of the near-infrared spectroscopy in the pharmaceutical technology. Journal of Pharmaceutical and Biomedical Analysis, 66, 1–10.
  • 20. Anderson, C. A., Drennen, J. K., Ciurczak, E. W. (2008). Pharmaceutical applications of near-infrared spectroscopy. Practical Spectroscopy Series, 35, 585.
  • 21. Siesler, H. W., Ozaki, Y., Kawata, S., Heise, H. M. (2008). Near-infrared spectroscopy: principles, instruments, applications. John Wiley & Sons.
  • 22. Agelet, L. E., Hurburgh Jr, C. R. (2010). A tutorial on near infrared spectroscopy and its calibration. Critical Reviews in Analytical Chemistry, 40(4), 246–260.
  • 23. Workman, J. (1993). A review of process near infrared spectroscopy: 1980–1994. Journal of Near Infrared Spectroscopy, 1(4), 221–245.
  • 24. Noda, I. (2006). Progress in two-dimensional (2D) correlation spectroscopy. Journal of Molecular Structure, 799(1–3), 2–15.
  • 25. Bista, R. K., Bruch, R. F., Covington, A. M. (2010). Vibrational spectroscopic studies of newly developed synthetic biopolymers. Biopolymers, 93(5), 403–417.
  • 26. FDA Guidance for industry, (2004). PAT- a frame work for innovative pharmaceutical development. Manufacturing and quality assurance, pharmaceutical, in: CGMPs.
  • 27. McClure, W. F. (2003). 204 years of near infrared technology: 1800–2003. Journal of Near Infrared Spectroscopy, 11(6), 487–518.
  • 28. Bei M., Linbo W. (2015). An Application of Rapid Detection Technologies in a National Regulatory Laboratory Setting: Differentiating Imported and Domestic Drug Products of Oxcarbazepine Using Handheld Raman, Near Infrared, and Portable FTIR Analyzers. American Pharmaceutical Review , Featured-Articles/173075
  • 29. Plugge, W., Van Der Vlies, C. (1996). Near-infrared spectroscopy as a tool to improve quality. Journal of Pharmaceutical and Biomedical Analysis, 14(8–10), 891–898.
  • 30. Vakili, H., Wickström, H., Desai, D., Preis, M., Sandler, N. (2017). Application of a handheld NIR spectrometer in prediction of drug content in inkjet printed orodispersible formulations containing prednisolone and levothyroxine. International Journal of Pharmaceutics, 524(1–2), 414–423.
  • 31. Moffat, A. C., Trafford, A. D., Jee, R. D., Graham, P. (2000). Meeting the International Conference on Harmonisation’s Guidelines on Validation of Analytical Procedures: Quantification as exemplified by a near-infrared reflectance assay of paracetamol in intact tabletsThe opinions expressed in the following article are entirely those of the authors and do not necessarily represent the views of either The Royal Society of Chemistry or the Editor of The Analyst. Analyst, 125(7), 1341–1351.
  • 32. Dreassi, E., Ceramelli, G., Savini, L., Corti, P., Perruccio. P.L., Lonardi, S. (1995). Application of near-infrared reflectance analysis to the integrated control of antibiotic tablet production. Analyst, 120(2), 319–323.
  • 33. Rock Ville. (1990). Pharmaceutical convention. In United States pharmacopoeia 22nd ed.
  • 34. Bunaciu, A. A., Udristioiu, G. E., Ruţă, L. L., Fleschin, Ş., & Aboul-Enein, H. Y. (2009). Determination of diosmin in pharmaceutical formulations using Fourier transform infrared spectrophotometry. Saudi Pharmaceutical Journal, 17(4), 303–306.
  • 35. Stuart, B. (2005). Infrared spectroscopy. Kirk‐Othmer Encyclopedia of Chemical Technology.
  • 36. Skoog, D. A., Holler, F. J., Crouch, S. R. (2007). Instrumental analysis. Brooks/Cole, Cengage Learning Belmont.
  • 37. Ahuja, S., Jespersen, N. (2006). Principles of spectroscopy and spectroscopic analysis in Wilson and Wilson’s comprehensive analytical chemistry, in: Modern Instrumental Analysis, (pp. 111–137). Elsevier
  • 38. G.Brittain, H., David E.Bugay. (2006). In Infrared Absorption spectroscopy in spectroscopy of pharmaceutical solids. (pp. 235–265). Taylor and Francis.
  • 39. James R. Durig. (1980). Analytical Applications of FT-IR to Molecular and Biological Systems. University of South Carolina, Columbia, United States: NATO ASI Series.
  • 40. Wartewig, S., Neubert, R. H. (2005). Pharmaceutical applications of Mid-IR and Raman spectroscopy. Advanced Drug Delivery Reviews, 57(8), 1144–1170.
  • 41. Chan, K. L. A., Kazarian, S. G., Vassou, D., Gionis, V., Chryssikos, G. D. (2007). In situ high-throughput study of drug polymorphism under controlled temperature and humidity using FT-IR spectroscopic imaging. Vibrational Spectroscopy, 43(1), 221–226.
  • 42. Bunaciu, A. A., Aboul-Enein, H. Y., Fleschin, S. (2010). Application of Fourier Transform Infrared Spectrophotometry in Pharmaceutical Drugs Analysis. Applied Spectroscopy Reviews, 45(3), 206–219. doi:10.1080/00387011003601044
  • 43. Sorak, D., Herberholz, L., Iwascek, S., Altinpinar, S., Pfeifer, F., Siesler, H. W. (2012). New developments and applications of handheld Raman, mid-infrared, and near-infrared spectrometers. Applied Spectroscopy Reviews, 47(2), 83–115.
  • 44. Bunaciu, A. A., Aboul-Enein, H. Y., Fleschin, Ş. (2006). FT-IR Spectrophotometric analysis of acetylsalicylic acid and its pharmaceutical formulations. Canadian Journal of Analytical Sciences and Spectroscopy, 51, 253–259.
  • 45. Bunaciu, A. A., Bacalum, E., Aboul-Enein, H. Y., Elena Udristioiu, G., Fleschin, Ş. (2009). FT-IR spectrophotometric analysis of ascorbic acid and Biotin and their pharmaceutical formulations. Analytical Letters, 42(10), 1321–1327.
  • 46. McCluskey, E. S. (1985). Which vertebrates make vitamin C. Origins, 12(2), 96–100.
  • 47. Deisingh, A. K. (2005). Pharmaceutical counterfeiting. Analyst, 130(3), 271–279.
  • 48. Yang, P., Song, P., Sun, S.-Q., Zhou, Q., Feng, S., Tao, J.-X. (2009). Differentiation and quality estimation of Cordyceps with infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74(4), 983–990.
  • 49. Ricci, C., Eliasson, C., Macleod, N. A., Newton, P. N., Matousek, P., Kazarian, S. G. (2007). Characterization of genuine and fake artesunate anti-malarial tablets using Fourier transform infrared imaging and spatially offset Raman spectroscopy through blister packs. Analytical and Bioanalytical Chemistry, 389(5), 1525.
  • 50. Yap, K. Y.-L., Chan, S. Y., Lim, C. S. (2007). Authentication of traditional Chinese medicine using infrared spectroscopy: distinguishing between ginseng and its morphological fakes. Journal of Biomedical Science, 14(2), 265–273.
  • 51. Aaltonen, J., Gordon, K. C., Strachan, C. J., Rades, T. (2008). Perspectives in the use of spectroscopy to characterise pharmaceutical solids. International Journal of Pharmaceutics, 364(2), 159–169.
  • 52. Schmidt, A. C., Schwarz, I. (2005). Solid state characterization of hydroxyprocaine hydrochloride. Crystal polymorphism of local anaesthetic drugs, part VIII. Journal of Molecular Structure, 748(1–3), 153–160.
  • 53. Clarke, F. (2004). Extracting process-related information from pharmaceutical dosage forms using near infrared microscopy. Vibrational Spectroscopy, 34(1), 25–35.
  • 54. Bunaciu, A. A., Udristioiu, G. E., Ruţă, L. L., Fleschin, Ş., Aboul-Enein, H. Y. (2009). Determination of diosmin in pharmaceutical formulations using Fourier transform infrared spectrophotometry. Saudi Pharmaceutical Journal, 17(4), 303–306.
  • 55. Bunaciu, A. A., Aboul-Enein, H. Y., Fleschin, S. (2011). Recent applications of fourier transform infrared spectrophotometry in herbal medicine analysis. Applied Spectroscopy Reviews, 46(4), 251–260.
  • 56. Li, Y.-S., Church, J. S. (2014). Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. Journal of Food and Drug Analysis, 22(1), 29–48.
  • 57. Mahadevan-Jansen, A. (2003). Raman spectroscopy: from benchtop to bedside. Biomedical Photonics Handbook.
  • 58. Garrigues, S., de la Guardia, M. (2013). Non-invasive analysis of solid samples. TrAC Trends in Analytical Chemistry, 43, 161–173.
  • 59. Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., Popp, J. (2012). Surface-enhanced Raman spectroscopy (SERS): progress and trends. Analytical and bioanalytical chemistry, 403(1), 27-54.
  • 60. Dent, G., Smith, G. (2005). Modern Raman spectroscopy: a practical approach. Wiley.
  • 61. Paudel, A., Raijada, D., Rantanen, J. (2015). Raman spectroscopy in pharmaceutical product design. Advanced Drug Delivery Reviews, 89, 3–20.
  • 62. Smith, E., Dent, G. (2013). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.
  • 63. Roggo, Y., Degardin, K., Margot, P. (2010). Identification of pharmaceutical tablets by Raman spectroscopy and chemometrics. Talanta, 81(3), 988–995.
  • 64. Hajjou, M., Qin, Y., Bradby, S., Bempong, D., Lukulay, P. (2013). Assessment of the performance of a handheld Raman device for potential use as a screening tool in evaluating medicines quality. Journal of Pharmaceutical and Biomedical Analysis, 74, 47–55.
  • 65. Noonan, K. Y., Tonge, L. A., Fenton, O. S., Damiano, D. B., Frederick, K. A. (2009). Rapid classification of simulated street drug mixtures using Raman spectroscopy and principal component analysis. Applied Spectroscopy, 63(7), 742–747.
  • 66. Loethen, Y. L., Kauffman, J. F., Buhse, L. F., Rodriguez, J. D. (2015). Rapid screening of anti-infective drug products for counterfeits using Raman spectral library-based correlation methods. Analyst, 140(21), 7225–7233.
  • 67. Rohleder, D. R., Kocherscheidt, G., Gerber, K., Kiefer, W., Köhler, W., Möcks, J., Petrich, W. H. (2005). Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum. Journal of Biomedical Optics, 10(3), 031108.
  • 68. Darvin, M. E., Sterry, W., Lademann, J. (2010). Resonance Raman spectroscopy as an effective tool for the determination of antioxidative stability of cosmetic formulations. Journal of Biophotonics, 3(1‐2), 82–88.
  • 69. Witkowski, M. R. (2005). The use of Raman spectroscopy in the detection of counterfeit and adulterated pharmaceutical products. American Pharmaceutical Review, 8, 56–62.
  • 70. Gala, U., Chauhan, H. (2015). Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development. Expert opinion on drug discovery, 10(2), 187–206.
  • 71. Tfayli, A., Piot, O., Pitre, F., Manfait, M. (2007). Follow-up of drug permeation through excised human skin with confocal Raman microspectroscopy. European Biophysics Journal, 36(8), 1049–1058.
  • 72. Franzen, L., Selzer, D., Fluhr, J. W., Schaefer, U. F., Windbergs, M. (2013). Towards drug quantification in human skin with confocal Raman microscopy. European journal of pharmaceutics and biopharmaceutics, 84(2), 437–444.
  • 73. Downes, A., Elfick, A. (2010). Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), 1871–1889.
  • 74. Puviarasan, N., Arjunan, V., Mohan, S. (2002). FT-IR and FT-Raman studies on 3-aminophthalhydrazide and N-aminophthalimide. Turkish Journal of Chemistry, 26(3), 323–334.
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

1H-TETRAZOL İÇEREN YENİ 1,2,4-TRİAZOL TÜREVLERİNİN TASARIMI, SENTEZİ, ANTİMİKROBİYAL VE ANTİFUNGAL AKTİVİTELERİ

Yuliia FROLOVA, Andriy KAPLAUSHENKO, Nataliya NAGORNAYA

TÜRKİYE'DE DOĞAL OLARAK YETİŞEN VE AKTARLARDA SATILAN SUMAK (RHUS CORIARIA L.) MEYVELERİNİN YAĞ ASİDİ KOMPOZİSYONLARININ KİMYASAL KARAKTERİZASYONU VE ANTİMİKROBİYAL AKTİVİTESİ

Gülderen YILMAZ, Gulnur EKŞİ, Betül DEMİRCİ, Fatih DEMİRCİ

YENİ TAKRİN VE HESPERETİN ANALOGLARI: ALZHEİMER HASTALIĞINDA POTANSİYEL ASETİLKOLİN ESTERAZ İNHİBİTÖRLERİNİN AYDINLATILMASI İÇİN TASARIM, MOLEKÜLER DOKİNG VE İN SİLİKO ADME ÇALIŞMALARI

Naresh KONDAPALLI, Kanna SRUTHI

TÜRKİYE’DE HALK ARASINDA CİLT HASTALIKLARININ TEDAVİSİNDE KULLANILAN TIBBİ BİTKİLER – EGZAMA, SEDEF HASTALIĞI, VİTİLİGO

Zeynep Büşra ERARSLAN, Gülay ECEVİT-GENÇ, Şükran KÜLTÜR

YENİ 3-(ALKİLTİYO)-5-(TİYOFEN-2-İLMETİL)-1,2,4-TRİAZOL-4-AMİNLERİN MİKRODALGA SENTEZİ

Andrey SAFONOV

MİNYATÜRE EDİLMİŞ VE PORTATİF YAKIN KIZIL ÖTESİ (NIR), FOURIER DÖNÜŞÜMLÜ KIZILÖTESİ (FTIR) ve RAMAN SPEKTROMETRELERİNİN FARMASÖTİKLERİN DENETİMİ VE KONTROLÜNDEKİ UYGULAMALARI

Abdullahi Garba USMAN, Umar Muhammad GHALİ, Selin IŞIK

AMELANCHIER MEDIK. (ROSACEAE) CİNSİNİN FARMASÖTİK BOTANİK AÇISINDAN ÖNEMİ

Muhammed Mesud HÜRKUL, Ayşegül KÖROĞLU

YEŞİL ÇAY VE SİYAH ÇAY EKSTRELERİNDEKİ GALLİK ASİT, EGCG İÇERİĞİ VE ANTİRADİKAL AKTİVİTESİNİN DEĞERLENDİRİLMESİ

Asli CAN AGCA, Kadir BATÇIOĞLU, Engin ŞARER

PSEUDOMONAS AERUGINOSA İLE ENFEKTE EDİLMİŞ CİVCİVLERİN KARACİĞERİNE POTASYUM 2-((4-AMİNO-5-(MORFOLİNOMETİL)-4H-1,2,4-TRİAZOL-3- İL)TİYO)ASETAT (PKR-173) BİLEŞİĞİNİN DÜZELTİCİ ETKİSİNİN HİSTOLOJİK OLARAK ARAŞTIRILMASI

Yevgenia VASHCHYK, Roman SHCHERBYNA, Volodymyr PARCHENKO, İnna BUSHUEVA, Bogdan GUTYJ, Hanna FOTINA, Tatiana FOTINA, Yuriy STRONSKYI

OKÜLER UYGULAMA İÇİN VORİKONAZOL YÜKLÜ İN SİTU JELLERİN FORMÜLASYONU VE DETAYLI KARAKTERİZASYONU

Neslihan ÜSTÜNDAĞ OKUR, Vildan YOZGATLI, Zeynep ŞENYİĞİT