GENİŞ SPEKTRUMLU ANTİKANSER BİLEŞİKLER GELİŞTİRMEYE YÖNELİK POTANSİYEL BİR HEDEF: HEKSOKİNAZ-II

Amaç: Kanser hücrelerinin glikoza duydukları ihtiyaç sonucu solunumla ilgili metabolik yolaklarını yeniden düzenlemesi, kanser hücrelerini normal hücrelerden ayıran önemli değişimlerden biridir ve bu değişim ilk olarak 1920’li yıllarda Otto Warburg tarafından rapor edildiği için “Warburg Fenomeni” olarak bilinir. Kanser hücrelerindeki artmış glikoliz, bu yolağı önemli bir kanser hedefi haline getirir. Glikolizin ilk ve hız kısıtlayıcı basamaklarından biri olan Heksokinaz (HK) enzimi bu açıdan önemli bir hedeftir ve kanser hücrelerinde karşımıza çıkan HK-II’nin baskın olduğu fenotip bu izozime yönelik tedavilerin geliştirilmesini mümkün kılar. Medisinal kimya yaklaşımları kullanılarak bu izozime karşı selektivite sağlayan heterosiklik yapılar ve fonksiyonel gruplar belirlenerek yeni inhibitörler dizayn edilebilir.

A POTENTIAL TARGET FOR DEVOLOPING BROAD SPECTRUM ANTICANCERS: HEXOKINASE-II

Objective: As a result of increased need of glucose, reprogramming the metabolic pathways related to respiration is a significant change in cancer cells which differs them from normal cells and this change is known as “Warburg Phenomenon” because firstly reported by Otto Warburg in 1920s. Increased glycolysis in cancer cells makes glycolysis pathway an important target for cancer tratment. Hexokinase (HK), first and one of the rate limiting steps of glycolitic pathway, is an important target through this perspective since the prominent phenotype in cancer cells is HK-II, this makes the development of new therapies against this isozyme possible. Using medicinal chemistry approaches new inhibitors can be designed by determining the heterocycles and functional groups providing selectivity against this isozyme.

___

  • 1. Pirastehzad, A., Taghizadeh, A., Jamshidi, A.A. (2020). The formation of cancer stem cells in EMT6/Ro tumor: Hybrid modeling within its micro-environment. Informatics in Medicine Unlocked, 18, 100247. [CrossRef]
  • 2. Valkenburg, K.C., de Groot, A.E., Pienta, K.J. (2018). Targeting the tumour stroma to improve cancer therapy. Nature Reviews Clinical Oncology, 15(6), 366-381. [CrossRef]
  • 3. Hemalatha, T., UmaMaheswari, T., Krithiga, G., Sankaranarayanan, P., Puvanakrishnan, R. (2013). Enzymes in clinical medicine: an overview. Indian Journal of Experimental Biology, 51(10), 777-788.
  • 4. Bobrovnikova-Marjon, E., Hurov, J.B. (2014). Targeting metabolic changes in cancer: novel therapeutic approaches. Annual Review of Medicine, 65, 157-170. [CrossRef]
  • 5. Warburg, O., Wind, F., Negelein, E. (1927). The metabolism of tumors in the body. The Journal of General Physiology, 8(6), 519-530. [CrossRef]
  • 6. Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309-314. [CrossRef]
  • 7. Hundshammer, C., Braeuer, M., Müller, C.A., Hansen, A.E., Schillmaier, M., Düwel, S., Feuerecker, B., Glaser, S.J., Haase, A., Weicherd, W., Steiger, K., Cabello, J., Schilling, F., Hövener, J., Kjaer, A., Nekolla, S.G., Schwaiger, M. (2018). Simultaneous characterization of tumor cellularity and the Warburg effect with PET, MRI and hyperpolarized 13C-MRSI. Theranostics, 8(17), 4765. [CrossRef]
  • 8. Mathupala, S.P., Ko, Y.A., Pedersen, P.L. (2006). Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene, 25(34), 4777-4786. [CrossRef]
  • 9. Lehninger, A.L., Nelson, D.L., Cox, M.M. (2005). Lehninger Principles of Biochemistry, New York: W.H. Freeman.
  • 10. Courtnay, R., Ngo, D.C., Malik, N., Ververis, K., Tortorella, S.M., Karagiannis, T.C. (2015). Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Molecular Biology Reports, 42(4), 841-851. [CrossRef]
  • 11. Kaelin Jr, W.G., Ratcliffe, P.J. (2008). Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Molecular Cell, 30(4), 393-402. [CrossRef]
  • 12. Vander Heiden, M.G., Cantley, L.C., Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029-1033. [CrossRef]
  • 13. Gill, K.S., Fernandes, P., O'Donovan, T.R., McKenna, S.L., Doddakula, K.K., Power, D.G., Soden, D.M., Forde, P.F. (2016). Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1866(1), 87-105. [CrossRef]
  • 14. Roberts, D.J., Miyamoto, S. (2015). Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death & Differentiation, 22(2), 248-257. [CrossRef]
  • 15. Miyamoto, S., Murphy, A. N., Brown, J. H. (2008). Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death & Differentiation, 15(3), 521-529. [CrossRef]
  • 16. Fruehauf, J.P., Meyskens, F.L. (2007). Reactive oxygen species: a breath of life or death?. Clinical Cancer Research, 13(3), 789-794. [CrossRef]
  • 17. Tan, V.P., Miyamoto, S. (2015). HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy, 11(6), 963-964. [CrossRef]
  • 18. Min, J.W., Kim, K.I., Kim, H.A., Kim, E.K., Noh, W.C., Jeon, H.B., Cho D.H., Oh J.S., Park I.C., Hwang S.G., Kim, J.S. (2013). INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells. Biochemical and Biophysical Research Communications, 440(1), 137-142. [CrossRef]
  • 19. Lin, H., Zeng, J., Xie, R., Schulz, M.J., Tedesco, R., Qu, J., Erhard, K.F., Mack, J.F., Raha, K., Rendina, A.R., Szewczuk, L.M., Kratz, P.M., Jurewicz, A.J., Cecconie, T., Martens, S., McDevitt, P.J., Martin, J.D., Chen, S.B., Jiang, Y., Nickels, L., Schwartz, B.J., Smallwood, A., Zhao, B., Campobasso, N., Qian, Y., Briand, J., Rominger, C.M., Oleykowski, C., Hardwicke, M.A., Luengo, J.I. (2016). Discovery of a novel 2, 6-disubstituted glucosamine series of potent and selective hexokinase 2 inhibitors. ACS Medicinal Chemistry Letters, 7(3), 217-222. [CrossRef]
  • 20. Hu, J.W., Sun, P., Zhang, D.X., Xiong, W.J., Mi, J. (2014). Hexokinase 2 regulates G1/S checkpoint through CDK2 in cancer-associated fibroblasts. Cellular Signalling, 26(10), 2210- 2216. [CrossRef]
  • 21. Fang, R., Xiao, T., Fang, Z., Sun, Y., Li, F., Gao, Y., Feng, Y., Li, L., Wang, Y., Liu, X., Chen, H., Liu, X., Ji, H. (2012). MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. Journal of Biological Chemistry, 287(27), 23227-23235. [CrossRef]
  • 22. Shoshan, M.C. (2012). 3-Bromopyruvate: targets and outcomes. Journal of Bioenergetics and Biomembranes, 44(1), 7-15. [CrossRef]
  • 23. Queirós, O., Preto, A., Pacheco, A., Pinheiro, C., Azevedo-Silva, J., Moreira, R., Pedro, M., Ko, Y.H., Pendersen, P.L., Baltazar, F., Casal, M. (2012). Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3- bromopyruvate. Journal of Bioenergetics and Biomembranes, 44(1), 141-153. [CrossRef]
  • 24. Chen, Z., Zhang, H., Lu, W., Huang, P. (2009). Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 1787(5), 553-560. [CrossRef]
  • 25. Ko, Y.H., Pedersen, P.L., Geschwind, J.F. (2001). Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Letters, 173(1), 83-91. [CrossRef]
  • 26. Ko, Y.H., Smith, B.L., Wang, Y., Pomper, M.G., Rini, D.A., Torbenson, M.S., Hullihen J., Pedersen, P.L. (2004). Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochemical and Biophysical Research Communications, 324(1), 269-275. [CrossRef]
  • 27. Pruss, M., Dwucet, A., Tanriover, M., Hlavac, M., Kast, R.E., Debatin, K.M., Wirtz, C.R., Halatsch, M., Siegelin, M.D., Westhoff, M., Karpel-Massler, G. (2020). Dual metabolic reprogramming by ONC201/TIC10 and 2-Deoxyglucose induces energy depletion and synergistic anti-cancer activity in glioblastoma. British Journal of Cancer, 122(8), 1146-1157.
  • [CrossRef] 28. Cheng, G., Zielonka, J., Dranka, B.P., McAllister, D., Mackinnon, A.C., Joseph, J., Kalyanaraman, B. (2012). Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Research, 72(10), 2634-2644. [CrossRef]
  • 29. Nath, K., Guo, L., Nancolas, B., Nelson, D.S., Shestov, A.A., Lee, S.C., Roman, J., Zhou, R., Leeper, D.P., Halestrap, A.P., Blair, I.A., Glickson, J.D. (2016). Mechanism of antineoplastic activity of lonidamine. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1866(2), 151- 162. [CrossRef]
  • 30. Chen, H., Chen, F., Hu, W., Gou, S. (2018). Effective platinum (IV) prodrugs conjugated with lonidamine as a functional group working on the mitochondria. Journal of Inorganic Biochemistry, 180, 119-128. [CrossRef]
  • 31. Li, W., Zheng, M., Wu, S., Gao, S., Yang, M., Li, Z., Min, Q., Sun, W., Chen, L., Xiang, G., Li, H. (2017). Benserazide, a dopadecarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. Journal of Experimental & Clinical Cancer Research, 36(1), 1-12. [CrossRef]
  • 32. Salani, B., Marini, C., Del Rio, A., Ravera, S., Massollo, M., Orengo, A.M., Amaro, A., Passalacqua, M., Maffioli, S., Pfeffer, U., Cordera, R., Maggi, D., Sambuceti, G. (2013). Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Scientific Reports, 3(1), 1-8. [CrossRef]
  • 33. Adinolfi, B., Carpi, S., Romanini, A., Da Pozzo, E., Castagna, M., Costa, B., Martini, C., Olensen, S., Schmitt, N., Breschi, M.C., Nieri, P., Fogli, S. (2015). Analysis of the antitumor activity of clotrimazole on A375 human melanoma cells. Anticancer Research, 35(7), 3781-3786.
  • 34. Goldin, N., Arzoine, L., Heyfets, A., Israelson, A., Zaslavsky, Z., Bravman, T., Bronner, V., Notcovich, A., Shoshan-Barmatz, V., Flescher, E. (2008). Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene, 27(34), 4636-4643. [CrossRef]
  • 35. Liu, Y., Li, M., Zhang, Y., Wu, C., Yang, K., Gao, S., Zheng, M., Li, X., Li, H., Chen, L. (2020). Structure based discovery of novel hexokinase 2 inhibitors. Bioorganic Chemistry, 96, 103609. [CrossRef]
  • 36. Zheng, M., Wu, C., Yang, K., Yang, Y., Liu, Y., Gao, S., Wang, Q., Li, C., Chen, L., Li, H. (2021). Novel selective hexokinase 2 inhibitor Benitrobenrazide blocks cancer cells growth by targeting glycolysis. Pharmacological Research, 164, 105367. [CrossRef]
  • 37. Li, W., Gao, F., Ma, X., Wang, R., Dong, X., Wang, W. (2017). Deguelin inhibits non-small cell lung cancer via down-regulating Hexokinases II-mediated glycolysis. Oncotarget, 8(20), 32586. [CrossRef]
  • 38. Li, W., Ma, X., Li, N., Liu, H., Dong, Q., Zhang, J., Yang, C., Liu, Y., Liang, Q., Zhang, S., Xu, C., Song, W., Tan, S., Rong, P., Wang, W. (2016). Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway. Experimental Cell Research, 349(2), 320-327. [CrossRef]
  • 39. Xu, D., Jin, J., Yu, H., Zhao, Z., Ma, D., Zhang, C., Jiang, H. (2017). Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2. Journal of Experimental & Clinical Cancer Research, 36(1), 44. [CrossRef]
  • 40. Tao, L., Wei, L., Liu, Y., Ding, Y., Liu, X., Zhang, X., Wang, X., Yao, Y., Lu, J., Wang, Q., Hu, R. (2017). Gen-27, a newly synthesized flavonoid, inhibits glycolysis and induces cell apoptosis via suppression of hexokinase II in human breast cancer cells. Biochemical Pharmacology, 125, 12-25. [CrossRef]
  • 41. Yao, J., Liu, J., Zhao, W. (2018). By blocking hexokinase-2 phosphorylation, limonin suppresses tumor glycolysis and induces cell apoptosis in hepatocellular carcinoma. OncoTargets and Therapy, 11, 3793. [CrossRef]
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

NASTURTIUM OFFICINALE’NİN FİTOKİMYASAL İÇERİĞİ, ANTİOKSİDAN VE ENZİM İNHİBİTÖR ETKİLERİ

Murat ZOR, Sultan PEKACAR, Didem DELİORMAN ORHAN

ECZACILARDA COVID-19 VE TEDAVİSİNE YÖNELİK BİLGİ DÜZEYİ ÖLÇÜLMESİ

Bayram NALLI, Şükran KÖSE, Ömer DEMİR, Elvan GÖKMEN, Esra ÖZDAĞ, Aliye MANDIRACIOĞLU

KOZMETİK ÜRÜNLERDE GÖRÜLEN MİKROBİYOLOJİK KONTAMİNASYONLAR

Ayşe ARAS, Müjde ERYILMAZ

TAURİN, KAPSAİSİN, MELATONİN VE BETA KAROTENİN L929 SAĞLIKLI HÜCRELER VE MCF-7 MEME KANSERİ HÜCRELERİ ÜZERİNDEKİ ANTİPROLİFERATİF, ANTİMİGRASYON VE ANTİOKSİDAN ETKİLERİNİN ARAŞTIRILMASI

Hande YÜCE, Neşe BAŞAK TÜRKMEN, Dilan AŞKIN ÖZEK, Songül ÜNÜVAR

HASTANEDE KULLANILAN DEZENFEKTANLAR NOZOKOMİYAL ENFEKSİYON ETKENİ BAKTERİLER ÜZERİNE DE ETKİLİ Mİ?: BİR ÜNİVERSİTE HASTANESİ GÖZLEMİ

Çiğdem YAVAŞ, Fatma KAYNAK ONURDAĞ, Suzan ÖKTEN

HEDEFE YÖNELİK TEDAVİDE GÜNCEL YAKLAŞIMLAR: LUTESYUM-177 İLE İŞARETLİ RADYOFARMASÖTİKLER

Dorukhan HIŞIR, Meliha EKİNCİ, Derya İLEM-ÖZDEMİR

SARS-COV-2'YE KARŞI RNA-BAĞIMLI RNA POLİMERAZ (RDRP) İNHİBİTÖR İLAÇLARI: BİR MOLEKÜLER DOCKİNG ÇALIŞMASI

Sarah GADO, Zeynep ALAGÖZ

QUERCUS MACRANTHERA SUBSP. SYSPIRENSIS (K. KOCH) MENITSKY’İN DAL VE YAPRAK EKSTRELERİNİN FİTOKİMYASAL ANALİZİ VE ANTİBAKTERİYEL AKTİVİTESİ ÜZERİNE BİR ÇALIŞMA

Merve Eylül KIYMACI, Kenan Can TOK, Muhammed Mesud HÜRKUL

EFFECT OF EFFLUX PUMP (DAP) INHIBITORS TO EFFICACY OF MEROPENEM ON ACINETOBACTER SPP. CLINICAL ISOLATES

Suzan ÖKTEN, Alparslan Semih SALAN, Gülcan KUYUCUKLU, Fatma KAYNAK ONURDAĞ

CHROOCOCCUS MINUTUS (KÜTZİNG) NÄGELİ'NİN (CHROOCOCCALES, CYANOBACTERIA) ANTİOKSİDAN, ANTİBAKTERİYEL VE ALFA-GLUKOZİDAZ İNHİBİSYON ÖZELLİKLERİNİN TOPLAM FENOLİK İÇERİĞİ VE İN VİTRO ANALİZİ

Eldrin ARGUELLES