DENEY HAYVANLARINDA FERTİLİTE YÖNÜNDEN BİTKİSEL KAYNAKLI ANTİOKSİDANLARIN KULLANIMI

        Amaç: Deney hayvanlarında bitkisel kaynaklı antioksidanların kullanımının fertilite üzerine etkisini araştırmak amaçlandı.        Gereç ve Yöntem: Bu alanda yapılmış bilimsel çalışmalar incelendi. Elde edilen bilimsel bilgiler doğrultusunda antioksidan içerikli bazı bitkilerin deney hayvanlarında fertilite parametrelerine etkileri derlenmeye çalışıldı. Antioksidanlar, oksidasyonu engelleyen maddeler olarak tanımlanmaktadır. En yaygın antioksidan maddeler arasında olan A vitamini, C vitamini, E vitamini ve fenolik bileşiklerin temel kaynağı bitkilerdir. Antioksidan maddeler, hücresel metabolizma ile mitokondrilerde enerji üretilmesi sırasında yan ürün olarak açığa çıkan serbest radikalleri nötraliz ederek zararlı etkilerine karşı vücudu korurlar. Ancak açığa çıkan serbest radikaller antioksidan maddelerin detoksifiye etme kapasitesini aşarsa oksidatif stres meydana gelerek hücrelerde Dezoksiribonükleik asit (DNA), protein ve lipit hasarı ile malignant hücre gelişimine neden olabilir. Dolayısı ile oksidatif stresin organ ve dokularda hastalık meydana getirmesinin yanında eşey hücrelerde oluşturduğu fonksiyon bozuklukları ile de reprodüktif sorunlara yol açmaktadırlar.          Sonuç ve Tartışma: Tavşan, sıçan ve fareler üzerinde yapılan çalışmalarda nötralize edilemeyen serbest radikallerin fertilite sorunlarına yol açtığı tespit edilmiştir. Bu alanda yapılan çalışmaların sonucunda deney hayvanlarında bitkisel kaynaklı antioksidanların kullanımın sperm, semen, oosit ve embriyo gibi fertilite parametrelerini iyileştirdiği saptanmıştır.

USES OF PLANT-DERIVED ANTIOXIDANTS IN TERMS OF FERTILITY IN EXPERIMENTAL ANIMALS

Objective: This study was aimed to investigate the effect of using plant-derived antioxidants on fertility in experimental animals.         Material and Method: Scientific studies related to this study were investigated. In line with information obtained, the effects of some antioxidant plants on fertility parameters of experimental animals were reviewed. Antioxidants are defined as substances that inhibits oxidation. The most common antioxidant substances are vitamin A, vitamin C, vitamin E and phenolic compounds. And also, their main origin are the plants. Free radicals arise as byproduct during production of energy by cellular metabolism in mitochondria. Antioxidants neutralize free radicals and thus protect the body against the harmful effects of oxidants. If the free radicals exceed detoxification capacity of antioxidant substances, oxidative stress occurs. Oxidative stress can damage to cellular components such as deoxyribonucleic acid (DNA), protein and lipids and leads to formation of malignant cells. So, oxidative stress results in reproductive problems because it induces functional disorders in sex cells, organs and tissues.         Result and Discussion: Studies on rabbits, mice, and rats have shown that non-neutralized free radicals cause reproductive dysfunction In conclusion, it was determined that the plant-derived antioxidants improve fertility parameters such as sperm, semen, oocytes and embryos in the experimental animals.

___

  • 1. Hanukoglu, I. (2006). Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug metabolism reviews, 38(1-2), 171-196.
  • 2. Jeeva, J. S., Sunitha, J., Ananthalakshmi, R., Rajkumari, S., Ramesh, M., & Krishnan, R. (2015). Enzymatic antioxidants and its role in oral diseases. Journal of pharmacy & bioallied sciences, 7(Suppl 2), S331.
  • 3. Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. S. R., & De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 91-100.
  • 4. Sen, S., & Chakraborty, R. (2011). The role of antioxidants in human health. Oxidative stress: diagnostics, prevention, and therapy, 1083, 1-37.
  • 5. Luximon-Ramma, A., Bahorun, T., Soobrattee, M. A., & Aruoma, O. I. (2002). Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. Journal of Agricultural and Food Chemistry, 50(18), 5042-5047.
  • 6. Al Jothery, A. H., Vaanholt, L. M., Mody, N., Arnous, A., Lykkesfeldt, J., Bünger, L., ... & Speakman, J. R. (2016). Oxidative costs of reproduction in mouse strains selected for different levels of food intake and which differ in reproductive performance. Scientific reports, 6, 36353.
  • 7. Hanafi, E. M., Raouf, A. A., Kassem, S. S., Abdel-Kader, M. M., & Elkadrawy, H. H. (2010). A novel herbal remedy to alleviate drawbacks of heat stress in rats with special references to some reproductive and molecular alterations. Global J. Biotechnol. Biochem, 5(3), 145-52.
  • 8. Storey, K. B. (1996). Oxidative stress: animal adaptations in nature. Brazilian Journal of Medical and Biological Research, 29, 1715-1733.
  • 9. Ornoy, A. (2007). Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reproductive toxicology, 24(1), 31-41.
  • 10. Miller, J. K., Brzezinska-Slebodzinska, E., & Madsen, F. C. (1993). Oxidative stress, antioxidants, and animal function. Journal of dairy science, 76(9), 2812-2823.
  • 11. Puppel, K., Kapusta, A., & Kuczyńska, B. (2015). The etiology of oxidative stress in the various species of animals, a review. Journal of the Science of Food and Agriculture, 95(11), 2179-2184.
  • 12. Metcalfe, N. B., & Alonso‐Alvarez, C. (2010). Oxidative stress as a life‐history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Functional Ecology, 24(5), 984-996.
  • 13. Zhong, R. Z., & Zhou, D. W. (2013). Oxidative stress and role of natural plant derived antioxidants in animal reproduction. Journal of Integrative Agriculture, 12(10), 1826-1838.
  • 14. Melov, S., Schneider, J. A., Day, B. J., Hinerfeld, D., Coskun, P., Mirra, S. S., ... & Wallace, D. C. (1998). A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nature genetics, 18(2), 159.
  • 15. Rizzo, A., Roscino, M. T., Binetti, F., & Sciorsci, R. L. (2012). Roles of reactive oxygen species in female reproduction. Reproduction in Domestic Animals, 47(2), 344-352.
  • 16. Agarwal, A., & Allamaneni, S. S. (2004). Role of free radicals in female reproductive diseases and assisted reproduction. Reproductive biomedicine online, 9(3), 338-347.
  • 17. Stier, A., Reichert, S., Massemin, S., Bize, P., & Criscuolo, F. (2012). Constraint and cost of oxidative stress on reproduction: correlative evidence in laboratory mice and review of the literature. Frontiers in zoology, 9(1), 37.
  • 18. Walczak–Jedrzejowska, R., Wolski, J. K., & Slowikowska–Hilczer, J. (2013). The role of oxidative stress and antioxidants in male fertility. Central European journal of urology, 66(1), 60.
  • 19. Agarwal, A., Aponte-Mellado, A., Premkumar, B. J., Shaman, A., & Gupta, S. (2012). The effects of oxidative stress on female reproduction: a review. Reproductive biology and endocrinology, 10(1), 49.
  • 20. Aitken, R. J., & Baker, M. A. (2004). Oxidative stress and male reproductive biology. Reproduction, Fertility and development, 16(5), 581-588.
  • 21. Aitken, R. J., & Roman, S. D. (2008). Antioxidant systems and oxidative stress in the testes. Oxidative medicine and cellular longevity, 1(1), 15-24.
  • 22. Agarwal, A., Makker, K., & Sharma, R. (2008). Clinical relevance of oxidative stress in male factor infertility: an update. American journal of reproductive immunology, 59(1), 2-11.
  • 23. Shrilatha, B. (2007). Early oxidative stress in testis and epididymal sperm in streptozotocin-induced diabetic mice: its progression and genotoxic consequences. Reproductive Toxicology, 23(4), 578-587.
  • 24. Demyda, S., & Genero, E. (2011). Developmental competence of in vivo and in vitro matured oocytes: a review. Biotechnology and Molecular Biology Reviews, 6(7), 155-165.
  • 25. El Mouatassim, S., Guerin, P., & Menezo, Y. (1999). Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Molecular Human Reproduction, 5(8), 720-725.
  • 26. Agarwal, A., Gupta, S., & Sharma, R. K. (2005). Role of oxidative stress in female reproduction. Reproductive biology and endocrinology, 3(1), 28.
  • 27. Wang, X., Falcone, T., Attaran, M., Goldberg, J. M., Agarwal, A., & Sharma, R. K. (2002). Vitamin C and Vitamin E supplementation reduce oxidative stress–induced embryo toxicity and improve the blastocyst development rate. Fertility and sterility, 78(6), 1272-1277.
  • 28. Shahidi, F., Janitha, P. K., & Wanasundara, P. D. (1992). Phenolic antioxidants. Critical reviews in food science & nutrition, 32(1), 67-103.
  • 29. Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352.
  • 30. Khaki, A., Ouladsahebmadarek, E., Javadi, L., Farzadi, L., Fathiazad, F., & Nouri, M. (2011). Anti-oxidative effects of citro flavonoids on spermatogenesis in rat. African Journal of Pharmacy and Pharmacology, 5(6), 721-725.
  • 31. Halenár, M., Tvrdá, E., Baldovská, S., Ondruška, Ľ., Massányi, P., & Kolesárová, A. In vitro Effects of Viscum album on the Functionality of Rabbit Spermatozoa. World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 11(2), 108-112.
  • 32. Khaki, A., Fathiazad, F., Ahmadi-Ashtiani, H. R., Rastgar, H., & Rezazadeh, S. (2009). Effects of Danae racemosa on Spermatogenesis in Rat. Journal of Medicinal Plants, 3(31), 87-92.
  • 33. Zangeneh, F. Z., Minaee, B., Amirzargar, A., Ahangarpour, A., & Mousavizadeh, K. (2010). Effects of chamomile extract on biochemical and clinical parameters in a rat model of polycystic ovary syndrome. Journal of reproduction & infertility, 11(3), 169.
  • 34. Ofem, O. E. (2014). Enhancement of some sex hormones concentrations by consumption of leaves extract of Viscum album (mistletoe) in rats. Asian Journal of Medical Sciences (E-ISSN 2091-0576; P-ISSN 2467-9100), 5(3), 87-90.
  • 35. Ifeanyi, A. C., Yama, O. E., Ikechukwu, D. F., Adewale, O. A., Noronha, C. C., & Olugbenga, O. A. (2011). Effect of Momordica Charantia on estrous cycle of Sprague-Dawley rats. Pacific Journal of Medical Sciences, 8(1), 37-48.