Sıvı Yönetiminde EVLW ve Önemi

Sıvı yönetimi ve optimizasyonu, anesteziyoloji ve yoğun bakımda sık karşılaşılan günlük sorunlar- dandır. İdeal hemodinamik yönetim dokulara oksijen sunumunu arttırmakta, postoperatif sonuç- ları iyileştirmekte ve cerrahi maliyeti düşürmektedir. Sıvı tedavisinin istenmeyen etkilerinin erken öngörülmesi ve takibinde damar dışı akciğer sıvısı (EVLW) ölçümü giderek kabul gören bir yöntem haline gelmiştir. Akut dolaşım yetmezliği tedavisinde temel amaç doku perfüzyonunu ve oksjeni- zasyonunu iyileştirirken sıvı yüklenmesinden kaçınmaktır. EVLW, akciğerlerde pulmoner damarlar dışında bulunan interstisyel, intrasellüler, alveoler ve lenfatik sıvıyı kapsar ve sağlıklı kişilerde normal değerleri 3-7 ml kg-1’dir. Bu konudaki çalışmalar, cut-off değeri olarak 10 ml kg-1 üzerinde- ki değerlerin pulmoner ödeme işaret ettiğini göstermiştir. EVLW ölçümünde altın standart gravi- metrik yöntem olmakla birlikte, post-mortem yapılabilmesi nedeniyle günümüzde akciğer ultra- sonografisi ve transpulmoner termodilüsyon teknikleri daha yaygın kullanılmaktadır. Gelecekte özellikle ALI/ARDS hastalarının hemodinamik yönetiminde EVLW ölçümünün önemli bir yer tut- ması beklenmektedir ve bu alanda yapılacak çalışmaların EVLW bazlı sıvı tedavisine odaklanması yararlı olacaktır.

EVLW and its Importance in Fluid Management

Fluid management and optimization is one of the most frequently observed problems in anesthe- siology and critical care. An ideal hemodynamic management increases oxygen supply to tissues, improves postoperative outcomes and decreases surgical costs. Extravascular lung water (EVLW) measurement has gained widespread acceptance in the early prediction and management of adverse effects caused by fluid treatment. The fundamental aim of acute circulatory failure treat- ment is to improve tissue perfusion and oxygenation while avoiding fluid overload. EVLW consists of extravascular interstitial, intracellular, alveolar and lymphatic fluid in the lungs and its normal values are 3-7 ml kg-1. Studies have reported that values above 10 ml kg-1 as a cut-off value points to pulmonary edema. Although the gold standard in EVLW measurement is the gravimetric method, lung ultrasound and transpulmonary thermodilution is more widely utilized since gravi- metric measurement can only be performed post-mortem. EVLW measurement is expected to gain importance in the hemodynamic measurement of ALI/ARDS patients and future studies will benefit from focusing on EVLW based fluid therapy

___

  • 1. Cannesson M. Arterial Pressure Variation and Goal- Directed Fluid Therapy. J Cardiothorac Vasc Anesth. 2010;24:487-97. https://doi.org/10.1053/j.jvca.2009.10.008
  • 2. Monnet X, Teboul JL. My patient has received fluid. How to assess its efficacy and side effects? Ann Intensive Care. 2018;8:15. https://doi.org/10.1186/s13613-018-0400-z
  • 3. Kuiper AN, Trof RJ, Groeneveld ABJ. Mixed venous O2 saturation and fluid responsiveness after cardiac or major vascular surgery. J Cardiothorac Surg. 2013;8:189. https://doi.org/10.1186/1749-8090-8-189
  • 4. Mekontso-Dessap A, Castelain V, Anguel N, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaero- bic metabolism in patients. Intensive Care Med. 2002;28:272-7. https://doi.org/10.1007/s00134-002-1215-8
  • 5. Monnet X, Teboul JL. Assessment of fluid responsive- ness: Recent advances. Curr Opin Crit Care. 2018;24:190-5. https://doi.org/10.1097/MCC.0000000000000501
  • 6. Monnet X, Teboul JL. Transpulmonary thermodilution: Advantages and limits. Crit Care. 2017;21:147. https://doi.org/10.1186/s13054-017-1739-5
  • 7. Lee CWC, Kory PD, Arntfield RT. Development of a fluid resuscitation protocol using inferior vena cava and lung ultrasound. J Crit Care. 2016;31:96-100. https://doi.org/10.1016/j.jcrc.2015.09.016
  • 8. Jozwiak M, Silva S, Persichini R, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41:472-80. https://doi.org/10.1097/CCM.0b013e31826ab377
  • 9. Wang W, Yu X, Zuo F, et al. Risk factors and the associ- ated limit values for abnormal elevation of extravascu- lar lung water in severely burned adults. Burns. 2019;45:849-59. https://doi.org/10.1016/j.burns.2018.11.007
  • 10. Malbrain ML, Marik PE, Witters I, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or inju- red patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46:361-80. https://doi.org/10.5603/AIT.2014.0060
  • 11. Cordemans C, de Laet I, van Regenmortel N, et al. Aiming for a negative fluid balance in patients with acute lung injury and increased intraabdominal pres- sure: A pilot study looking at the effects of PAL- treatment. Ann Intensive Care. 2012;2:S15. https://doi.org/10.1186/2110-5820-2-S1-S15
  • 12. Eichhorn V, Goepfert MS, Eulenburg C, Malbrain MLNG, Reuter DA. Comparison of values in critically ill pati- ents for global end-diastolic volume and extravascular lung water measured by transcardiopulmonary ther- modilution: A metaanalysis of the literature. Med Intensiva. 2012;36:467-74. https://doi.org/10.1016/j.medin.2011.11.014
  • 13. Tagami T, Ong MEH. Extravascular lung water measure- ments in acute respiratory distress syndrome: Why, how, and when? Curr Opin Crit Care. 2018;24:209-15. https://doi.org/10.1097/MCC.0000000000000503
  • 14. Picano E, Pellikka PA. Ultrasound of extravascular lung water: A new standard for pulmonary congestion. Eur Heart J. 2016;37:2097-104. https://doi.org/10.1093/eurheartj/ehw164
  • 15. Scali MC, Zagatina A, Simova I, et al. B-lines with Lung Ultrasound: The Optimal Scan Technique at Rest and During Stress. Ultrasound Med Biol. 2017;43:2558-66. https://doi.org/10.1016/j.ultrasmedbio.2017.07.007
  • 16. Assaad S, Shelley B, Perrino A. Transpulmonary Thermodilution: Its Role in Assessment of Lung Water and Pulmonary Edema. J Cardiothorac Vasc Anesth. 2017;31:1471-80. https://doi.org/10.1053/j.jvca.2017.02.018
  • 17. Diaz-Gomez JL, Ripoll JG, Ratzlaff RA, et al. Perioperative LungUltrasoundfortheCardiothoracicAnesthesiologist: Emerging Importance and Clinical Applications. J Cardiothorac Vasc Anesth. 2017;31:610-25. https://doi.org/10.1053/j.jvca.2016.11.031
  • 18. Lancaster L, Bogdan AR, Kundel HL, McAffee B. Sodium MRI with coated magnetite: Measurement of extravas- cular lung water in rats. Magn Reson Med. 1991;19:96- 104. https://doi.org/10.1002/mrm.1910190109
  • 19. Mayo JR, MacKay AL, Whittall KP, Baile EM, Paré PD. Measurement of lung water content and pleural pres- sure gradient with magnetic resonance imaging. J Thorac Imaging. 1995;10:73-81. https://doi.org/10.1097/00005382-199501010-00007
  • 20. den Harder AM, de Heer LM, Maurovich-Horvat P, et al. Ultra low-dose chest ct with iterative reconstructi- ons as an alternative to conventional chest x-ray prior to heart surgery (CRICKET study): Rationale and design of a multicenter randomized trial. J Cardiovasc Comput Tomogr. 2016;10:242-5. https://doi.org/10.1016/j.jcct.2016.01.016
  • 21. Velazquez M, Haller J, Amundsen T, Schuster DP. Regional lung water measurements with PET: Accuracy, reproducibility, and linearity. J Nucl Med. 1991;32:719- 25.
  • 22. Schuster DP, Anderson C, Kozlowski J, Lange N. Regional pulmonary perfusion in patients with acute pulmonary edema. J Nucl Med. 2002;43:863-70.
  • 23. Pomerantz M, Delgado F, Eiseman B. Clinical evaluati- on of transthoracic electrical impedance as a guide to intrathoracic fluid volumes. Ann Surg. 1970;171:686- 94. https://doi.org/10.1097/00000658-197005000-00007
  • 24. Lewis FR, Elings VB, Hill SL, Christensen JM. The mea- surement of extravascular lung water by thermal-green dye indicator dilution. Ann N Y Acad Sci. 1982;384:394- 410. https://doi.org/10.1111/j.1749-6632.1982.tb21388.x
  • 25. Dasta JF, McLaughlin TP, Mody SH, Piech CT. Daily cost of an intensive care unit day: The contribution of mec- hanical ventilation. Crit Care Med. 2005;33:1266-71. https://doi.org/10.1097/01.CCM.0000164543.14619.00
  • 26. Scillia P, Delcroix M, Lejeune P, et al. Hydrostatic pul- monary edema: Evaluation with thin-section CT in dogs. Radiology. 1999;211:161-8. https://doi.org/10.1148/radiology.211.1.r99ap07161
  • 27. Naum A, Tuunanen H, Engblom E, et al. Simultaneous evaluation of myocardial blood flow, cardiac function and lung water content using (15O) H2O and positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34:563-72. https://doi.org/10.1007/s00259-006-0259-3
  • 28. Hopkins SR, Levin DL, Emami K, et al. Advances in mag- netic resonance imaging of lung physiology. J Appl Physiol. 2007;102:1244-54. https://doi.org/10.1152/japplphysiol.00738.2006
  • 29. Patroniti N, Bellani G, Maggioni E, Manfio A, Marcora B, Pesenti A. Measurement of pulmonary edema in patients with acute respiratory distress syndrome. Crit Care Med. 2005;33:2547-54. https://doi.org/10.1097/01.CCM.0000186747.43540.25
Anestezi Dergisi-Cover
  • ISSN: 1300-0578
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1993
  • Yayıncı: Betül Kartal