İlaç uygulama performansının değerlendirilmesinde kalitatif ve kantitatif analiz yöntemlerinin incelenmesi

İlaçlama ünitelerinin uygulama performanslarını belirlemek için çeşitli kalitatif ve kantitatif yöntemler geliştirilmiştir. Uygulamalarda hata varyansını azaltmak için çok sayıda örneğin analizi yapıldığından, ölçüm yöntemlerinin pratik, kolay ve ekonomik olması arzu edilir. Kalitatif yöntemlerde ölçümler, görüntü işleme programlarıyla yapılmaktadır. Bu yöntemde örnekleme materyali olarak suya duyarlı, yağa duyarlı kartlar ve kromekote kartları kullanılmakta ve neme duyarlı olduklarından uygun olmayan şartlarda renk değiştirerek görüntü işleme kaliteleri bozulmaktadır. Kantitatif yöntemlerde ise filtre kağıdı, petri kabı ve bitki yaprağı gibi örnekleme materyalleri kullanılmakta ve uygulamalarda püskürtme sıvısına pestisit yerine gıda boyası karıştırılmaktadır. Bu yöntemde yüzeyden yıkanan maddenin bozulmadan tamamen çözücüye karışması, kullanılan örnekleme materyalinin özelliğine bağlıdır. Ayrıca uygulamadan sonra yüzeyde tutunan madde, açık havada solar radyasyona maruz kaldığından bozulabilmekte ve çözeltinin konsantrasyonu değişebilmektedir. Bu çalışmada kalitatif ve kantitatif analiz yöntemlerinde görüntü işleme kalitesini, renk maddelerinin bozulmasını ve renk maddelerinin geri kazanımını etkileyen faktörler literatür bilgileri ısığında derlenmiştir.

Investigation of qualitative and quantitative analysis methods in evaluating spray application performance

Various qualitative and quantitative methods were developed for the determination of spray application performance. These methods are desired to be practical, easy and economic because of analyzing lots of samples to decrease error variance. The measurements in quantitative methods were made with image processing software. Water-sensitive, oilsensitive and kromekote cards are used as sampling materials and their image processing quality is spoiled by changing color at the unsuitable conditions because of their sensitivity to humidity. Sampling materials such a filter paper, petri dishes and plant leaf are used in quantitative methods and food dye is mixed to spray liquid instead of pesticide in the spray application. At this method, the mixing of dye completely washed from surface without degradation, depends on the properties of the used sampling material. On the other hand, dye deposited on the surface after the application may be degraded due to its explosion to solar radiation at the open atmosphere and this can change the concentration of solution. In this study, the factors affecting the recovery of color dyes, degradation of dye materials and image processing quality in qualitative and quantitative methods were reviewed regarding up to date literatures.

___

  • Ade, G., Rondelli, V., 2007. Performance of an air-assisted boom sprayer in the control of Colorado beetle infestation in potato crops. Biosystems Engineering, 97: 181-187.
  • Ade, G., Molari, G., Rondelli, V., 2007. Recycling tunnel sprayer for pesticide dose adjustment to the environment. Transactions of the ASABE, 50(2): 409- 413.
  • Almekinders H., Ozkan, H. E., Reichard, D. L., Carpenter, T. G., Brazee, R. D., 1993. Deposition efficiency of air-assisted, charged sprays in a wind tunnel. Transactions of the ASAE, 36(2): 321-325.
  • Anonymous, 2002. Water sensitive paper for monitoring spray distributions. CH-4002. Basle, Switzerland: Syngenta Crop Protection AG.
  • Baetens, K., Nuyttens D., Verboven, P., Schampheleire, M. De, Nicolai, B., Ramon, H., 2007. Predicting drift from field spraying by means of a 3D computational fluid dynamics model. Computers and Electronics in Agriculture, 56(2): 161-173.
  • Balsari, P., Marucco, P., Tamagnone, M., 2007. A test bench for the classification of boom sprayers according to drift risk. Crop Protection, Crop Protection, 26(10): 1482-1489.
  • Barber, J. A. S., Parkin, C. S., Chowdhury, A. B. M. N. U., 2003. Effect of application method on control of powdery mildew (Blumeria graminis) on spring barley. Crop Protection, 22: 949-957.
  • Bayat, A., Bozdogan, N. Y., 2005. An air-assisted spinning disc nozzle and its performance on spray deposition and reduction of drift potential. Crop Protection, 24: 651-960.
  • Bozdogan, N. Y., Bayat, A., 2005. Spray deposition and drift potential of an air-assisted atomizer (Turbofan® Sprayhead) in spraying cotton plants. Proceedings of the 9th International Congress on Mechanization and Energy in Agriculture & 27th International Conference of CIGR Section IV: The Efficient Use of Electricity Renewable Sources in Agriculture, Sep., İzmir, 27-29.
  • Coates, W., Palumbo, J., 1997. Deposition, off-target movement, and efficacy of CaptureTM and ThiodanTM applied to cantaloupes using five sprayers. Applied Engineering in Agriculture, 13 (2): 181-188.
  • Coates, W., 1996. Spraying technologies for cotton: Deposition and Efficacy. Applied Engineering in Agriculture, 12 (3): 287-296.
  • Degré, A., Mostade, O., Huyghebaert, B., Tissot, S., Debouche, C., 2001. Comparison by image processing of target supports of spray droplets. Transactions of the ASAE, 44 (2): 217-222.
  • Derksen, R. C., Gray, R. L., 1995. Deposition and air speed patterns of air-carrier apple orchard sprayers. Transactions of the ASAE, 38(1): 5-11.
  • Derksen, R. C., Sanderson, J. P., 1996. Volume, speed, and distribution technique effects on poinsettia foliar deposits. Transactions of the ASAE, 39(1): 5-9.
  • Dursun, E., Çilingir, İ., 1994. Döner diskli memede elektrostatik yükleme etkinliğinin belirlenmesi. Tarımsal Mekanizasyon 15. Ulusal Kongresi, 221-230, 20-22 Eylül, Antalya.
  • Fox, R. D., Hall, F. R., Reichard, D. L., Brazee, R. D., Krueger, H. R., 1993a. Pesticide tracers for measuring orchard spray drift. Transactions of the ASAE, 9(6): 501-505.
  • Fox, R. D., Reichard, D. L., Brazee, R. D., Krause, C. R., Hall, F. R., 1993b. Downwind residues from spraying a semi-dwarf apple orchard. Transactions of the ASAE, 36(2): 333-340.
  • Fox, R. D., Salyani, M., Cooper, J. A., Brazee R. D., 2001. Spot size comparisons on oil- and water- sensitive paper. Applied Engineering in Agriculture, 17(2): 131- 136.
  • Franz, E., 1993. Spray coverage analysis using a hand-held scanner. Transactions of the ASAE, 36(5): 1271-1278.
  • Gupta, C. P., Duc, T. X., 1996. Deposition studies of a handheld air-assisted electrostatic sprayer. Transactions of the ASAE, 39(5): 1633-1639.
  • Hall, F. R., Kirchner, L. M., Downer, R. A., 1992. Some practical limitations of fluorescent tracers used to measure off-target pesticide deposition. Pesticide Formulations and Application System: 12th Volume, ASTM STP 1146. Bala N. Divisetty, David, G. Chasin and Paul D. Berger, Eds., American Society for Testing and Materials, Philadelphia.
  • Hoffmann, W. C., Salyani, M., 1996. Spray deposition on citrus canopies under different meteorological conditions. Transactions of the ASAE, 39(1): 17-32.
  • Holownicki, R., Doruchowski, G., Godyn, A., Swiechowski, W., 2000. Variation of spray deposit and loss with airjet directions applied in orchards. Journal of Agricultural Engineering Research, 77(2): 129-136.
  • Jensen, P. K., Lund, I., 2006. Static and dynamic distribution of spray from single nozzles and the influence on biological efficacy of band applications of herbicides. Crop Protection, 25: 1201-1209.
  • Jensen, P. K., Jørgensen, L. N., Kirknel, E., 2001. Biological efficacy of herbicides and fungicides applied with low-drift and twin-fluid nozzles. Crop Protection, 20: 57-64.
  • Liu, Q., Cooper, S. E., Qi, L., Fu, Z., 2006. Experimental study of droplet transport time between nozzles and target. Biosystems Engineering, 95(2): 151-157.
  • MacIntyre-Allen, J. K., Tolman, J. H., Scott-Dupree, C. D., Harris, C. R., 2007. Confirmation by fluorescent tracer of coverage of onion leaves for control of onion thrips using selected nozzles, surfactants and spray volumes. Crop Protection, 26(11): 1425-1433.
  • Marçal, A. R. S., Cunha, M., 2008. Image processing of artificial targets for automatic evaluation of spray quality. Transactions of the ASABE, 51(3): 811-821.
  • Mulrooney, J. E., Howard, K. D., Hanks, J. E., Jones, R. G., 1997. Application of ultra-low volume malathion by air-assisted ground sprayer for boll weevil (Coleoptera: Curculionidae) control. Journal of Economic Entomology, 90(2): 639-645.
  • Palladini, L. A., Raetano, C. G., Velini, E. D., 2005. Choice of tracers for the evaluation of spray deposits. Sci. Agric. (Piracicaba, Braz.), 62(5): 440-445.
  • Panneton, B., 2002. Image analysis of water sensitive cards for spray coverage experiments. Applied Engineering in Agriculture, 18(2): 179-182.
  • Parnell, M. A., King, W. J., Jones, K. A., Ketunuti, U., Wetchakit, D., 1999. A comparison of motorized knapsack mistblower, medium volume application, and spinning disk, very low volume application, of Helicoverpa armigera nuclear polyhedrosis virus on cotton in Thailand. Crop Protection, 18: 259-265.
  • Pergher, G., 2001. Recovery rate of tracer dyes used for spray deposit assessment. Transactions of the ASAE, 44(4): 787-794.
  • Pezzi, F., Rondelli, V., 2000. The performance of an airassisted sprayer operating in vines. Journal of Agricultural Engineering Research, 76: 331-340.
  • Piché, M., Panneton, B., Thériault, R., 2000a. Field evaluation of air-assisted boom spraying on broccoli and potato. Transactions of the ASAE, 43(4): 793-799.
  • Piché, M., Panneton, B., Thériault, R., 2000b. Reduced drift from air-assisted spraying. Canadian Agricultural Engineering, 43(3): 117-122.
  • Pierce, R. A., Ayers, P. D., 2001. Evaluation of deposition and application accuracy of a pulse width modulation variable rate field sprayer. ASAE Paper No. 011077. St. Joseph, Mich.: ASAE.
  • Salyani, M., Cromwell, R. P., 1992. Spray drift from ground and aerial applications. Transactions of the ASAE, 35(4): 1113-1120.
  • Salyani, M., Fox, R. D., 1994. Performance of image analysis for assessment of simulated spray droplet distribution. Transactions of the ASAE, 37(4): 1083- 1089.
  • Salyani, M., Fox, R. D., 1999. Evaluation of spray quality by oil-water sensitive papers. Transactions of the ASAE, 42(1): 37-43.
  • Salyani, M., Hoffmann, W. C., 1996. Air and spray distribution from an air-carrier sprayer. Applied Engineering in Agriculture, 12(5): 539-545.
  • Salyani, M., Whitney, J. D., 1988. Evaluation of methodologies for field studies of spray deposition. Transactions of the ASAE, 31(2): 390-395.
  • Salyani, M., 1993. Degradation of fluorescent tracer dyes in spray applications. Pesticide Formulation and Application System: 13th Volume, ASTM STP 1183, P. D. Berger, B. N. Devisetty, and F. R. Hall, Eds., American Society for Testing and Materials, Philadelphia.
  • Salyani, M., 1999. A technique for stabilizing droplet spots on oil-sensitive paper Transactions of the ASAE, 42(1): 45-48.
  • Sánchez-Hermosilla, J., Medina, R., 2004. Adaptive threshold for droplet spot analysis using watersensitive paper. Applied Engineering in Agriculture. 20(5): 547-551.
  • Scudeler, F., Raetano, C. G., 2006. Spray deposition and losses in potato as a function of air-assistance and sprayer boom angle. Sci. Agric. (Piracibaba, Braz.), 63, (6), November/December, 515-521.
  • Smith, D. B., Askew, S. D., Morris, W. H., Shaw, D. R., Boyette, M., 2000. Droplet size and leaf morphology effects on pesticide spray deposition. Transactions of the ASAE, 43(2): 255-259.
  • Sumner, H. R., Herzog, G. A., Sumner, P. E., Bader, M., Mullinix, B. G., 2000a. Chemical application equipment for improved deposition in cotton. The Journal of Cotton Science, 4: 19-27.
  • Sumner, H. R., Rains, G. C., Sumner, P. E., 2000b. String collectors to determine lag time of injection sprayers. Applied Engineering in Agriculture, 16(5): 471-476.
  • UTHSCSA, 1997. Object Analysis Plug-In. UTHSCSA Image Tool Software, Version 2.0, User’s Guide, p: 55.
  • Wang, L., Zhang, N., Slocombe, J. W., Thierstein, G. E., Kuhlman, D. K., 1995. Experimental analysis of spray distribution pattern uniformity for agricultural nozzles. Applied Engineering in Agriculture, 11(1): 51-55.
  • Wolf, R. E., 2005. Comparing downwind spray droplet deposits of four flat-fan nozzle types measured in a wind tunnel and analyzed using DropletScan™ software. Applied Engineering in Agriculture, 21(2): 173-177.
  • Womac, A. R., Mulrooney, J. E., Scott, W. P., 1992. Characteristics of air-assisted and drop-nozzle sprays in cotton. Transactions of the ASAE, 35(5): 1369- 1376.
  • Womac, A., Etheridge, R., Seibert, A., Hogan, D., Ray, S., 2001. Sprayer speed and venture-nozzle effects on broadcast application uniformity. Transactions of the ASAE, 44(6): 1437-1444.
  • Zhu, H., Dorner, J. W., Rowland, D. L., Derksen, R. C., Ozkan, H. E., 2004. Spray penetration into peanut canopies with hydraulic nozzle tips. Biosystems Engineering, 87(3): 275-273.
  • Zhu, H., Rowland, D. L., Dorner, J. W., Derksen, R. C., Sorensen, R. B., 2002. Influence of plant structure, orifice size, and nozzle inclination on spray penetration into peanut canopy. Transactions of the ASAE, 45(5): 1295-1301.
Anadolu Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-8750
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Ondokuz Mayıs Üniv. Ziraat Fak.